• Title/Summary/Keyword: Air-spring

Search Result 837, Processing Time 0.03 seconds

Static FE Analysis of Air Springs for Passenger Cars Considering the Mounting Steps (체결단계를 고려한 승용차용 에어스프링 정특성 설계해석기법 개발)

  • Lee, H. W.;Hahn, H. T.;Park, J. Y.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.387-394
    • /
    • 2015
  • Air springs are designed to support loads using the volume elasticity in a cylindrical shaped air bag made of a composite material with a rubber matrix and two plies of reinforced fibers. Recently, applications of these springs have been expanded from railway vehicles to passenger cars. The current study presents a finite element analysis of a manufactured air spring for a passenger car. The analysis was conducted including the mounting steps of the air bag using a static loading condition. A method for controlling the internal pressure and displacements during the mounting step was developed. The characteristic load curve and the shape of the air bag were in good agreement with the experimental data with respect to the design height, the bump height and the rebound height. Results indicate that ply angles of fibers vary from 38 degrees to 56 degrees during static loading.

Large deformation analysis of inflated air-spring shell made of rubber-textile cord composite

  • Tran, Huu Nam;Tran, Ich Thinh
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.31-50
    • /
    • 2006
  • This paper deals with the mechanical behaviour of the thin-walled cylindrical air-spring shell (CAS) made of rubber-textile cord composite (RCC) subjected to different types of loading. An orthotropic hyperelastic constitutive model is presented which can be applied to numerical simulation for the response of biological soft tissue and of the nonlinear anisotropic hyperelastic material of the CAS used in vibroisolation of driver's seat. The parameters of strain energy function of the constitutive model are fitted to the experimental results by the nonlinear least squares method. The deformation of the inflated CAS is calculated by solving the system of five first-order ordinary differential equations with the material constitutive law and proper boundary conditions. Nonlinear hyperelastic constitutive equations of orthotropic composite material are incorporated into the finite strain analysis by finite element method (FEM). The results for the deformation analysis of the inflated CAS made of RCC are given. Numerical results of principal stretches and deformed profiles of the inflated CAS obtained by numerical deformation analysis are compared with experimental ones.

Dynamic Analysis of Air Circuit Breaker with Spring-Actuated Linkage (스프링구동 링크를 가진 기중 회로차단기의 동적 분석)

  • 안길영;권병희;오일성;윤영관;최종웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.812-815
    • /
    • 1997
  • A dynamic model of air circuit breaker with a spring-actuated linkage is derived, and its validation for analysis and design, particularly appropriateness for an analysis of high-speed motion behavior are checked through experiments. The dynamic model is developed through the modeling process based on ADAMS and Pro/Engineer. The simulation results of derived dynamic models for the rapid closing and opening operations are compared with actual responses using a high-speed camera and investigated to validate their usefulness.

  • PDF

A Study of the Prediction of Earthquake Occurrence by Detecting Radon Radioactivity (라돈방사능농도의 측정을 통한 지진발생 예측에 관한 연구)

  • ;;;Takao Lida;Katsuhiro Yoshioka
    • Journal of Environmental Science International
    • /
    • v.12 no.6
    • /
    • pp.677-688
    • /
    • 2003
  • The purpose of this study was to predict occurrence of earthquakes in Korea by measuring the concentration of radon radioactivity in the air and in the underground water. Two monitoring systems of radon concentration detection in the air were installed in Seoul, East Coast area, whereas of radon concentration in the underground water in Kyungju area during December, 1999 to June, 2001. The distribution of radon concentration in the air in Seoul is as follows Winter(10.10 $\pm$ 2.81 Bq/㎥), autumn(8.41 $\pm$ 1.35 Bq/㎥), summer(5.83 $\pm$ 0.05 Bq/㎥) and spring (5.34 $\pm$ 0.44 Bq/㎥), whereas the distribution of radon in the air in the East Coast area showed some difference as follows : autumn (14.08 $\pm$ 5.75 Bq/㎥), Summer (12.04 $\pm$ 0.53 Bq/㎥), Winter (12.02 $\pm$ 1.40 Bq/㎥) and spring (8.93 $\pm$ 0.91 Bq/㎥). In the meanwhile, the distribution of radon in the water is as follows : spring (123.59 $\pm$ 16.36count/10min), Winter (93.95 $\pm$ 79.69counter/10min), autumn (68.96 $\pm$ 37.53counter/10min) and spring (34.45 $\pm$ 9.69counter/10min). The daily range of the density of radon concentration in Seoul and East Coast area was between 5.51 Bq/㎥ - 9.44 Bq/㎥, 7.15 Bq/㎥ - 15.27 Bq/㎥, respectively. Correlation of the distributions of radon concentrations in the air and in underground water with earthquake showed considerable variations of radon concentration before the occurrence of the earthquake. The results suggested that radon radioactivity seemed to be helpful for the prediction of the occurrence of earthquake.

Enhancing the Mechanical Properties of Z-Spring by Implementing CF&GF Hybrid Prepreg Lamination Patterns (CF&GF Hybrid Prepreg 적층 패턴에 따른 Z-Spring의 기계적 물성 향상에 관한 연구)

  • Kim, Jeong-Keun;Choi, Sun-Ho;Kim, Young-Keun;Kim, Hong-Gun;Kwac, Lee-Gu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.53-59
    • /
    • 2021
  • In vibration-free vehicles such as limousine buses, the vibration is minimized by installing an air spring instead of the leaf spring used in the existing freight cars to prevent the damage to the loaded cargo from shocks generated during movement. In the existing vehicles, steel structures support the air spring system. This study was aimed at replacing the steel structures used in the Z-spring by carbon fiber and glass fiber reinforced plastics. In addition, the mechanical properties (elastic modulus, tensile strength, and shear strength) of carbon fiber and glass fiber prepreg were derived using specimens molded with the corresponding prepreg. The final goal was to develop a material lighter than the conventional steel material but with enhanced mechanical properties. Although the CF prepreg exhibited excellent mechanical properties, the production cost was extremely high. To overcome this limitation, hybrid composites with GF prepreg were examined, which are expected to be promising future materials.

Floated Wafer Motion Modeling of Clean Tube system

  • Shin, Dong-Hun;Yun, Chung-Yong;Jeong, Kyoo-Sik;Choi, Chul-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1264-1268
    • /
    • 2004
  • This paper presents a wafer motion modeling of the transfer unit and the control unit in the clean tube system, which was developed as a means for transferring the air-floated wafers inside the closed tube filled with the super clean airs. The motion in the transfer unit is modeled as a mass-spring-damper system where the recovering force by air jets issued from the perforated plate is modeled as a linear spring. The motion in the control unit is also modeled as another mass-spring-damper system, but in two dimensional systems. Experiments with a clean tube system built for 12-inch wafers show the validity of the presented force and motion models.

  • PDF

Improvement of absorption characteristics by insert devices in a vertical tube (수직관내 삽입기구에 의한 흡수특성의 향상)

  • 김병주;신광섭;문형석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.466-474
    • /
    • 1998
  • In the present study, the improvement of absorption characteristics by installing insert devices, such as spring and wire screen, inside the vertical tube absorber were studied experimentally. Momentum, heat and mass transfer rate in the absolution process of smooth bare tube, smooth tube with spring-insert, and with wire screen-insert were compared and analysed in range of film Reynolds number of 40∼200. The improvement of heat transfer rate by spring-insert and screen-insert were remarkable especially in the low Reynolds number region. As the mesh number increased in screen-insert and as the pitch decreased in spring-insert, Nusselt and Sherwood number increased. Degradation of mass transfer by non-absorbable gas showed similar qualitative trends regardless of the insert type.

  • PDF

PZT stack actuator-based hybrid mount system for mitigating micro-vibration of vibration isolation table (제진 테이블의 미진동 저감을 위한 PZT stack 가력기 기반 복합형 마운트 시스템)

  • Moon, Yeong-Jong;Jang, Dong-Doo;Moon, Seok-Jun;Choi, Sang-Min;Jung, Hyung-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.292-298
    • /
    • 2009
  • This paper investigates the control performance of the proposed hybrid mount system for vibration isolation table. The hybrid mount system consists of an air spring as a passive device and a PZT stack actuator as an active device in series. The feasibility of the PZT stack actuator as an active actuator was examined through the simple experiments. After that, a series of numerical simulations were carried out to evaluate the control performance of the proposed hybrid mount system. The equations of motion of the table with a set of hybrid mount systems consisting of four devices are derived. The air spring is considered as a 1 spring and 1 dashpot elements, and PID control algorithm is adopted to estimate the control force. The results of the numerical simulations presents that the proposed hybrid mount system could be the promising control system for vibration isolation table.

  • PDF

The Influence of Long-range Transport on Springtime Nocturnal Ozone Enhancement in Seoul (봄철 서울지역 야간 오존농도 상승에 미치는 장거리 수송의 영향)

  • 오인보;김유근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.503-514
    • /
    • 2004
  • In Seoul metropolitan area, nocturnal variation of surface ozone concentrations observed at 27 monitoring sites from 1998 to 2002 showed that high ozone levels occurred frequently during the spring. Frequency distributions for nighttime ozone indicated that elevated concentrations in spring were influenced by advection of different air mass compared to other seasons. Surface wind analysis during the spring revealed that relatively strong southwesterly winds were associated with nocturnal ozone enhancement, which can be attributed to the regional transport of ozone. In order to identify the origin of nocturnal ozone enhancement in spring, 3-day backward trajectories were calculated by HYSPLIT 4 for the episode days and then classified. The results showed that NW, W, and SW flows, indicating influence of polluted air masses from the China continent, have 51% in a]1 the episode days, which suggest that the nocturnal ozone enhancement can occur under the effect of long-range transport of ozone-laden air mass on a regional scale. Case study of nocturnal ozone maxima associated with long-range transport was discussed in more detail in the light of meteorological conditions. Southwesterly synoptic flow along the outer edge of moving high-pressure system was found to be the important cause of nocturnal ozone maxima in Seoul. This flow could lead to be long-range transport of ozone that had effectively accumulated in the stagnating portion of the system located eastern coast of China. Low atmosphere soundings, backward trajectories, and elevated ozone and CO levels at the back-ground tiles gave evidence for regional effects on nocturnal ozone enhancement In Seoul.

Development of Uniform Press for Wafer Bonder (웨이퍼 본딩 장비용 Uniform Press 개발)

  • Lee, Chang-Woo;Ha, Tae-Ho;Lee, Jae-Hak;Kim, Seung-Man;Kim, Yong-Jin;Kim, Dong-Hoon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.4
    • /
    • pp.265-271
    • /
    • 2015
  • The bonding process should be achieved in vacuum environment to avoid air bubble. In this study, we studied about pressure uniformity that became an issue in thermo compression bonding usually. Uniform press is realized by the method that use air spring and metal form spring. The concept of uniform press using air spring is removed except pressing direction in the press processing so angle between the vector of pressure surface and the pressure axis is parallel automatically. Air spring compensate the errors of machining and assembly. Metal form compensate the thermal deformation and flatness error.