• 제목/요약/키워드: Air-process

검색결과 4,671건 처리시간 0.032초

수치해석을 이용한 다겹보온자재의 내부공기층 함유에 따른 보온 특성 (Thermal Insulation Property due to Internal Air-layer Content of Warm Multi Layer Materials by using Numerical Analysis)

  • 정성원
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.97-103
    • /
    • 2012
  • This study investigates thermal insulation properties of multi layer materials depending on thickness of air layers. Numerical analysis on the heat flow of different insulating materials was conducted to identify whether their temperature distributions demonstrate the reduced rate of heat transfer conclusively or not. Analytical model is divided into two categories. One is to distinguish temperature distribution of the air-layer materials from the non-air layer ones. The other is to compare the efficacy between eight-layered insulating materials with no air-layer contained and three-layered insulating materials which include an air-layer definitely. In the latter case, the identical thickness is assigned to each material. The effect of thermal insulation by including an air-layer is verified in the first analytical model. The result of the second model shows that the insulation of the eight-layered materials is coterminous at the three-layered ones with an air-layer and the thermal insulation of the two materials is imperceptible. The benefits of cost and energy saving are anticipated if air-layers are efficiently incorporated in multi layer insulating materials in a greenhouse.

2차 공기 주입방식에 따른 스토커형 소각로의 연소특성에 관한 수치해석적 연구 (A Numerical Study on the Combustion Characteristics for Stoker Type Incinerator with Various Injection Type of Secondary Air)

  • 정진;김창녕;조영민
    • 설비공학논문집
    • /
    • 제15권10호
    • /
    • pp.835-842
    • /
    • 2003
  • A three dimensional numerical analysis has been conducted for a stoker type incinerator which has the capacity of 1.5 ton/hr. The objective of the present study is to predict the effects of swirl induced by secondary air and to find an optimal operating condition of the incinerator. In this study, combustion characteristics such as distributions of temperature, velocity and concentration of each species have been examined with various injection types of secondary air and with different flow rates of secondary air in the incinerator. It is found that the secondary air injection on the combustion process makes the path of fluid particle longer in the combustor and enhances the mixing between air and combustion gas by arousing a swirl. Therefore, the injection type of secondary air can be an important key in the design process of incinerator.

초저온 냉풍시스템을 이용한 환경친화적 가공의 성능평가 (Performance Evaluation of Environmentally Conscious Machining using Super Low Temperature-Cold Air System)

  • 배정철;이승상;강명창;김정석
    • 한국기계가공학회지
    • /
    • 제1권1호
    • /
    • pp.48-54
    • /
    • 2002
  • In industrially advanced countries, environmentally conscious machining was eagerly studied because of ecological and economical reasons. As the environmental regulations become stricter, new machining technologies which take environmental aspects into consideration are being developed Industry and research institutions established applications for dry, semi-dry, oil-mist and compressed cold air machining. This paper investigates the performance of new compressed cold air system for environmentally conscious machining and evaluates machinability of dry and new compressed cold air machining. A series of tests are carried out using measuring eqipments under dry and compressed cold air machining.

  • PDF

연료전지 버스용 공기공급시스템 개발 (Development of Air Supply System for Fuel Cell Electric Bus)

  • 김우준;박창호;조경석;오창훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.561-564
    • /
    • 2007
  • FCEV uses electric energy which generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supply Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8$ % of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the performance of FCEV. This study will present the development process of an air blower and its consisting parts respectively.

  • PDF

연료전지 버스용 공기공급시스템 개발 (Development of Air Supply System for FCEV Bus)

  • 박창호;조경석;김우준;오창훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.417-420
    • /
    • 2006
  • FCEV uses electric energy generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supplies Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8%$ of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the overall performance of FCEV. This study will present developing process of an air blower and its consisting parts respectively.

  • PDF

부족팽창 습공기 제트의 히스테리과도현상 (Hysteric Transient Phenomenon of Under-Expanded Moist Air Jets)

  • 오성진;신춘식;김희동
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.460-463
    • /
    • 2008
  • the present study, the addresses the hysteric phenomenon of under-expanded jets with a help of a computational fluid dynamics methods. The under-expanded jets of both dry and moist air have been employed to the transient processes for the pressure ratio. It is known that under-expanded air jet produced during the process of increase in pressure ratio behaves different from the reducing process, leading to a hysteric phenomenon of under-expanded jet. It is also known that moist air jet significantly reduces the hysteric phenomenon found in the dry air jet, and that non-equilibrium condensation which occurs in the under-expanded moist air jet is responsible for these findings.

  • PDF

회전형 흡수식 제습기에 관한 연구 (A Study on the Rotary Absorptive Dehumidifer)

  • 김영일;김효경
    • 대한설비공학회지:설비저널
    • /
    • 제15권2호
    • /
    • pp.169-181
    • /
    • 1986
  • A numerical analysis has been conducted on the dehumidification phenomena of rotary absorptive dehumidifier. Parameters that affect the dehumidification efficiency, such as regeneration temperature, humidity, rotor angular velocity, air flow rate and regeneration section angle are studied and optimum driving conditions are determined from the results, Furthermore three new types of dehumidification method are developed to improve the efficiency They are named MODE 2, 3 and 4, while the present one MODE 1. Cooling zone has been constructed between regeneration and process Bone in MODE 2 and as a result exit temperature of the process air decreases. MODE 3 an improvement of MODE 2, recirculates the cooling air into the regeneration zone and regeneration input as well as exit temperature decreases. In MODE 4, some of tee regeneration air is recirculated and it cuts down the regeneration input. Among them MODE 3, showed the best dehumidification efficiency.

  • PDF

정규 확률과정을 사용한 공조 시스템의 전력 소모량 예측에 관한 연구 (A Study on the Prediction of Power Consumption in the Air-Conditioning System by Using the Gaussian Process)

  • 이창용;송근수;김진호
    • 산업경영시스템학회지
    • /
    • 제39권1호
    • /
    • pp.64-72
    • /
    • 2016
  • In this paper, we utilize a Gaussian process to predict the power consumption in the air-conditioning system. As the power consumption in the air-conditioning system takes a form of a time-series and the prediction of the power consumption becomes very important from the perspective of the efficient energy management, it is worth to investigate the time-series model for the prediction of the power consumption. To this end, we apply the Gaussian process to predict the power consumption, in which the Gaussian process provides a prior probability to every possible function and higher probabilities are given to functions that are more likely consistent with the empirical data. We also discuss how to estimate the hyper-parameters, which are parameters in the covariance function of the Gaussian process model. We estimated the hyper-parameters with two different methods (marginal likelihood and leave-one-out cross validation) and obtained a model that pertinently describes the data and the results are more or less independent of the estimation method of hyper-parameters. We validated the prediction results by the error analysis of the mean relative error and the mean absolute error. The mean relative error analysis showed that about 3.4% of the predicted value came from the error, and the mean absolute error analysis confirmed that the error in within the standard deviation of the predicted value. We also adopt the non-parametric Wilcoxon's sign-rank test to assess the fitness of the proposed model and found that the null hypothesis of uniformity was accepted under the significance level of 5%. These results can be applied to a more elaborate control of the power consumption in the air-conditioning system.

압력센서를 이용한 디지털 콘크리트 공기량 시험기 개발에 관한 연구 (Study of Digital Air Meter Used Pressure Sensor for Air Content of Freshly Mixed Concretes)

  • 윤인준;이경문;서인호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.566-569
    • /
    • 2006
  • The purpose of this study is to develop digital air meter used pressure sensor for measurement of air content in freshly mixed concrete by pressure method. The digital air meter can enhanced measurement accuracy and uniformity of air content in freshly concretes, according to use of pressure sensor and measuring process automation. Finally, the digital air meter in this study is improved reproducibility and reliability of measurement compared with analog air meter.

  • PDF

LNG 냉열을 활용한 저압 액화 공기 생산 공정 설계 및 경제성 평가 (Design and Economic Analysis of Low Pressure Liquid Air Production Process using LNG cold energy)

  • 문하늘;정근호;이인규
    • Korean Chemical Engineering Research
    • /
    • 제59권3호
    • /
    • pp.345-358
    • /
    • 2021
  • 본 연구에서는 액화천연가스(LNG; liquefied natural gas) 재기화 과정에서 버려지는 냉열을 회수하는 방법으로 액화 공기를 생산하는 공정을 개발하였다. 액화 공기는 LNG 수출국으로 운송하여 천연가스 액화를 위한 냉매를 부분적으로 대체하는 용도로 활용될 수 있다. 이를 위하여, 액화 공기는 LNG 운반선에 저장 가능한 압력을 만족하여야 한다. 따라서, 가장 널리 사용되는 멤브레인 탱크로 액화 공기를 운송하기 위해 약 1.3 bar에서 공기가 액체 상태로 존재할 수 있도록 설계하였다. 제안한 공정에서, 공기는 LNG와의 열교환 이후 추가적인 질소 냉매 사이클과의 열교환을 통해 과냉된다. LNG 운반선의 최대 용량만큼 액화 공기를 생산할 때 운송비용 측면에서 가장 경제적일 수 있으며, 천연가스 액화공정에서 활용할 수 있는 냉열이 많아지게 된다. 이를 비교하기 위하여, 동일한 1 kg/s의 LNG 공급 조건 하에서 기존 공정을 이용한 Base case와 제안공정 내 유입 공기 유량을 각각 0.50 kg/s, 0.75 kg/s, 1.00 kg/s으로 하는 Case1, Case2, Case3를 구성하고 열역학적 및 경제적 측면에서 분석하였다. 액화 공기 생산량이 많을수록 1kg의 생산량 당 더 많은 에너지가 요구되는 경향을 보였으며 Case3는 Base case 대비 0.18 kWh 높게 나타났다. 그 결과 Case3의 액화 공기 1 kg 당 생산 비용이 $0.0172 더 높게 나타났다. 그러나 액화 공기의 생산량이 증가함에 따라 1 kg 당 운송 비용이 $0.0395 감소하여 전체 비용 측면에서 Case3는 Base case에 비해 1 kg 당 $0.0223 적은 비용으로 액화 공기를 생산 및 운송할 수 있음을 확인하였다.