• 제목/요약/키워드: Air-process

검색결과 4,671건 처리시간 0.026초

사이클론 건조기용 이젝터 유동 특성에 관한 연구 (A Study on Flow Characteristics of Ejector for Cyclone Air Drying Machine)

  • 김봉환
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.189-194
    • /
    • 2012
  • The purpose of this study is to predict the performance of a cyclone drying machine and air ejector used in drying applications. This paper deals with optimization of the geometry of the ejector for sludge drying using computational fluid dynamics. To facilitate the design of a jet ejector for air drying machines, a numerical model of simultaneous mass and heat transfers between the liquid(sludge) and gas(air) phases in the jet ejector was developed. The steady-state model was based on unidimensional balance equations of mass, energy and momentum for the liquid and gas phases. It was shown that the optimum condition to minimize pressure and momentum loss of air in the ejector was d=220mm. It was found that sludge particles inside the cyclone was smoothly discharged by the conical wedge installed on the bottom of the cyclone.

항공물류 이해관계자들의 표준 인터페이스 방안 연구 (A Study on Interface Standard for Agencies of Air Logistics)

  • 이태윤;이두용;박설화;단단;권대우;이창호
    • 대한안전경영과학회지
    • /
    • 제12권1호
    • /
    • pp.105-111
    • /
    • 2010
  • The air logistics process is complex and need many informations because various agencies participate in the logistics service and there are many stakeholders in air logistics. But it is hard to improve the infra of facilities because of an enormous expense, so it needs to simplify air logistics process for growing air freight. When documents are sent, it needs to change the form of documents in spite of same document due to different form by agencies. Also documents are changed even though different documents have same informations. Consequently, errors are increased because the names of the same data are different from each other and stakeholders reproduce the documents. In order to mitigate these problems, we selected documents and analyzed data of documents for the interface optimization in general air logistics process. Next, we unified the names of data and defined contents of data. Also we set the type of the defined data on DB type, and gave the code to the defined data. It made easy to exchange informations among the stakeholders to match documents corresponding with the defined data.

Resin Transfer Molding을 이용한 공기 압축기용 스크류로터 제작에 관한 연구 (A Study on the Manufacturing of Screw Rotors for Air-Compressors Using RTM Process)

  • 서정도;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.139-142
    • /
    • 1999
  • Screw rotors are core parts of screw type air compressors, compressors in refrigerating machines and super chargers of automobiles etc. They are composed of a female and a male rotors which have complex section profiles and helically swept geometry. Screw type compressors have advantages of low noise, high efficiency, less needs in maintenance etc. Usually, machining process of screw rotors requires long machining time using CNC machine designed only for screw rotors, which increase the cost of production. In this work, the screw rotors for air-compressors were manufactured with fiber reinforced epoxy composite materials by resin transfer molding process. The mold for the RTM process was made of aluminum and silicon rubber and was designed for release of helical shape products. Composite screw rotors, manufactured by RTM process, have advantages of lightweight, less cost of production, good characteristics of vibration etc.

  • PDF

CVP 분석을 이용한 전투기 외부 도장면 제거 공정의 경제성 분석 (An Economical Efficiency Analysis of De-painting Process for Fighter Jets using CVP Analysis)

  • 이창용;박종훈
    • 산업경영시스템학회지
    • /
    • 제44권3호
    • /
    • pp.39-49
    • /
    • 2021
  • The Korean Air-Force aircraft maintenance depot paints the exterior of various aircraft, including high-tech fighters. Aircraft exterior painting is a maintenance process for long-term life management by preventing damage to the aircraft surface due to corrosion. The de-painting process is essential to ensure the quality of aircraft exterior paints. However, because the Korean Air-Force's de-painting process is currently done with sanding or Plastic Media Blasting (PMB) method, it is exposed to harmful dust and harmful compounds and consumes a lot of manpower. This study compares the de-painting process currently applied by the ROK Air-Force and the more improved process of the US Air Force, and performs economic analysis for the introduction of advanced equipment. It aims to provide information that can determine the optimal time to introduce new facilities through Cost-Volume-Profit (CVP) analysis. As a result of the analysis, it was confirmed that the sanding method had the most economical efficiency up to 2 units per year, the PMB method from 3 to 21 units, and the laser method from 22 units or more. In addition, in a situation where the amount of de-painting work is expected to increase significantly due to the increase in fighters in future, BEP analysis was conducted on the expansion of the existing PMB method and the introduction of a new laser method. As a result of the analysis, it was confirmed that it is more economical to introduce the laser method when the amount of work exceeds the PMB work capacity(18 units per year). The paper would helpful to improve the productivity and quality of the Korean Air Force Aircraft maintenance depot through timely changes of facilities in the workplace in preparation for expansion.

초미세발포 사출성형을 이용한 천정형 에어컨 4-way 판넬의 공정 최적화에 관한 연구 (A Study on the Process Optimization of Microcellular Foaming Injection Molded Ceiling Air-Conditioner 4-Way Panel)

  • 김주권;이정희;김종선;이준한;곽재섭
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.98-104
    • /
    • 2018
  • Deflected 4-way panels of ceiling air conditioners produced by injection molding process have caused dew condensation at the edge of products. In order to prevent this drawback with reducing weight and deformation, this study proposed renovated process adopting microcellular foaming. According to results from 2-sample t-test and analysis of variance(ANOVA), the critical factors affecting weight were melt temperature and injection speed. In addition, the vital effects on deformation were structure at the edge, mold temperature and cooling time. Optimal conditions of these parameters were derived by regressive analysis with CAE and response surface method(RSM), and then applied to an actual design and process stage to analyze performance. As a results, it clearly showed that new process improved process capability as well as reduced both weight and deformation by 18.8% and 71.9% respectively compared to the conventional method.

난기류 혼합법을 이용한 목섬유-열가소성 섬유 복합재에 관한 연구(I) - 공정변수가 복합재의 물리적 성질에 미치는 영향 - (Wood Fiber-Thermoplastic Fiber Composites by Turbulent Air Mixing Process(I) - Effects of Process Variables on the Physical Properties of Composites -)

  • 윤형운;이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제24권3호
    • /
    • pp.101-109
    • /
    • 1996
  • Effects of process variables were evaluated in physical properties of the wood fiber-thermoplastic fiber composites using nonwoven web method. Turbulent air mixer using compressed air was employed to mix wood fiber with two types of thermoplastic polypropylene and nylon 6 fibers. The optimal hot press temperature and time were found to be $190^{\circ}C$ and 9 minutes in wood fiber-polypropylene fiber composite and to be $220^{\circ}C$ and 9 minutes in wood fiber-nylon 6 fiber composite. As the density of wood fiber-polypropylene fiber composite and wood fiber-nylon 6 fiber composite increased, the physical properties were improved The density appeared to be the most significant factor on physical properties in the statistical analysis. The composition ratio of polypropylene or nylon 6 fiber to wood fiber was considered not to be statistically significant factor. The thickness swelling decreased somewhat in wood fiber-polypropylene fiber composite and wood fiber-nylon 6 fiber composite as the content of synthetic fiber increased. As the increase of mat moisture content, dimensional stability was improved in wood fiber-polypropylene fiber composite but not in wood fiber-nylon 6 fiber composite.

  • PDF

Hexamethyldisiioxane의 플라즈마 중합에 의하여 제조된 복합막을 통한 공기중의 휘발성 유기물질의 분리에 관한 연구 (Separation of VOCs from Air through Composite Membranes Prepared by Plasma Polymerization of Hexamethyldisiioxane)

  • 류동현;오세중;손우익;구자경
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1998년도 추계 총회 및 학술발표회
    • /
    • pp.63-65
    • /
    • 1998
  • 1. Introduction : Atmospheric discharge of VOC-contaminated streams in chemical plants and air streams from chemical processes poses a serious environmental problem and entails large financial losses. Such emissions may be reduced by i) adsorption process, ii) absorption process and iii) incineration process. These processes only forbids the air pollutions. Throughout the recent decade, another technique-membrane process has emerged. The separation and recovery of organic vapors by membrane process may have great economic potential. Most of the published research works on the separation of organic vapors from air were performed using silicon rubber membranes. However, it is very difficult to fabricate very thin membranes with less than 1 $u m thickness. Plasma polymerization could be a good technique to generate a thin polymer film. The objective of this work is to find out the optimum condition of plasma polymerization for producing VOC separation membrane. For the objective, composite membranes are prepared through plasma polymerization of hexamethyldisiloxane onto porous substrates under different conditions. The membrane is then subjected to the permeation of permanent gases and VOCs to find the correlations between the physical properties of the penetrant and permeability and selectivity.

  • PDF

태양열 온풍 이용을 위한 재생기의 설계 최적화 모델에 관한 연구 (Response Surface Approach to Design Optimization of Regenerator Using Hot Air Heated by Solar Collector)

  • 우종수;최광환;윤정인
    • 한국태양에너지학회 논문집
    • /
    • 제23권3호
    • /
    • pp.7-14
    • /
    • 2003
  • Absorption potential of desiccant solution significantly decreases after absorbing moisture from humid air, and a regeneration process requires a great amount of energy to recover absorption potential of desiccant solution. In an effort to develop an energy efficient regenerator, this study examines a regeneration process using hot air heated by solar radiation to recover absorption potential by evaporating moisture in liquid desiccant. More specifically, this study is aimed at finding the optimum operating condition of the regenerator by utilizing a well-established statistical tool, so-called response surface methodology(RSM), which may provide a functional relationship between independent and dependent variables. It is demonstrated that an optimization model to find the optimum operating condition can be obtained using the functional relationship between regeneration rate and affecting factors which is approximated on the basis experimental results.

2-Chlorophenol에 오염된 토양을 현장에서 처리하기 위한 Ozone-Venting 공정

  • 김정선;하현정;김현승;김일규
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.322-325
    • /
    • 2003
  • The feasibility of treating 2-chlorophenol (2CP) contaminated soils with ozone venting was investigated in this research. Adding ozone to the existing air-venting process provides an alternative to achieve a complete in-situ treatment by oxidizing the contaminant in the process. A column study with artificial soil was used to simulate the venting process. Ozone concentrations at 2.4, 7.6 and 19.4 mg/L, and flow rates at 100 and 150 mL/min were used. The reaction times were 10, 20, 50, and 60 minutes. Blank samples using air venting were also run for comparison. It is obvious that ozone-venting had a much faster removal rate than air-venting. As higher concentration of ozone is applied, the reaction rate increased significantly. As higher concentration was applied, the flux of ozone to the liquid film increased. This also increased the removal rate of 2CP and therefore the breakthrough curve came out earlier.

  • PDF

Modelling of evaporation from free water surface

  • Song, Wei-Kang;Chen, Yibo
    • Geomechanics and Engineering
    • /
    • 제21권3호
    • /
    • pp.237-245
    • /
    • 2020
  • The process of evaporation from free water surface was simulated in a large scale environmental chamber under various controlled atmospheric conditions and also was modelled by a new mass transfer model. Six evaporation tests were conducted with increasing wind speed and air temperature in the environmental chamber, and hence the effect of atmosphere parameters on the evaporation process and the corresponding response of water were investigated. Furthermore, based on the experiment results, seven general types of mass transfer models were evaluated firstly, and then a new model consisted of wind speed function and air relative humidity function was proposed and validated. The results show that the free water evaporation is mainly affected by the atmospheric parameters and the evaporation rate increases with the increasing air temperature and wind speed. Both the air and soil temperatures are affected by the energy transformation during water evaporation. The new model can satisfactorily describe the evaporation process from free water surface under different atmospheric conditions.