• Title/Summary/Keyword: Air-pressure

Search Result 5,475, Processing Time 0.028 seconds

Control Methods of the VAV Air Handling Unit for the Required Outdoor Air Demand (변풍량 공조시스템의 요구외기량 확보를 위한 제어방식)

  • Han, Do-Young;Joo, Young-Duk;Kim, Jin;Lee, Jun-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.3
    • /
    • pp.203-209
    • /
    • 2003
  • Control algorithms of an air handling unit by using the mixing box plenum pressures were developed and verified by experiments. Control algorithms developed for this study were the setpoint algorithms for the outdoor damper position, the outdoor/fixed plenum pressure, and the return/exhaust plenum pressure. The outdoor/fixed plenum pressure setpoint was used to control the bypass damper position, and the return/exhaust plenum pressure setpoint was used to control the return fan speed. Experimental results showed the good control of the required outdoor air demand. Therefore, setpoint algorithms developed for this study may effectively be applied for the control of the VAV air handling unit.

The Effect of Air Vent Holes and Stacking Methods of Fruits and Vegetables Boxes on Static Pressure Drop in Pressure Cooling System (청과물상자의 통기공 및 상자적재방법이 정압강하에 미치는 영향)

  • 김의웅;김병삼;남궁배;정진웅;김동철;금동혁
    • Journal of Biosystems Engineering
    • /
    • v.20 no.4
    • /
    • pp.360-367
    • /
    • 1995
  • The effect of air vent holes, stacking methods of boxes and clearance between boxes on static pressure drop, were measured to design of pressure cooling system. Static pressure drops in air vent hole of carton box were measured for different hole opening ratio from 1% to 5%. Static pressure drop was expressed as a function of superficial velocity as second-degree polynomial. At given static pressure in plenum chamber, static pressure drop in boxes was shown as second-degree polynomial of the number of carton box in series stacking method, as first-degree polynomial in height and parallel stacking method. In pressure cooling of 24 boxes of Tsugaru apple, air flow rates through clearance between the boxes were shown 1.27 and 1.65 times than those of through the inside of boxes at the plenum pressure of 10mmAq and 20mmAq, respectively.

  • PDF

CHARACTERISTICS OF OROPHARYNGEAL AIR PRESSURE, AIRFLOW IN CLEFT PALATE PATIENTS (구개열 환자에서의 구강인두압력 및 공기유량에 관한 음성학적 특징)

  • Baek, Jin-A
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • The articulation disorders associated with velopharyngeal insufficiency (VPI) in cleft palate patients are interested to clinicians particularly. The purpose of this study was to investigate mainly the oropharyngeal air pressure and overall air flow in cleft palate patients. The pressure-measuring catheter was positioned at the midportion of the oropharyngeal cavity with a facial mask. Test words were composed of 9 meaningless polysyllabic words and 17 meaningful words. Aerophone II and Nasometer II were used to measure peak air pressure, mean air pressure, maximum flow rate, volume, phonatory flow rate, nasalance. The data shows that airflow of the cleft palate patient group were higher than those of the control group. Intraoral air pressure of the cleft palate patient group was lower than those of the control group. The first vowel formant and first Bandwidths of the cleft palate patient group were higher than those of the control group.

A Study on the Characteristic of NOx Emissions by IMO Operating Modes in a Four Stroke Marine Power Generation Diesel Engine (선박 발전용 4행정 디젤엔진의 IMO 운전모드에 따른 NOx 배출특성에 관한 연구)

  • 김현규;김규보;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.457-465
    • /
    • 2004
  • Environmental protection on the ocean has been interested and nowadays the International Maritime Organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the performance and the emission characteristics of 4 stroke marine diesel engines for generation application in D2 cycle(IMO mode). The effects of important operating parameters, such as intake air pressure. intake air temperature and maximum combustion pressure on NOx emissions were also described. Emissions measurement and calculation are processed according to IMO Technical Code. The results show that the maximum combustion pressure by fuel injection timing control and intake air temperature has strong influence on NOx emission production. But NOx emission is not affected by intake air pressure and exhaust gas back pressure.

Design and Manufacture of the air mixing system for supersonic ground test facility (초음속 지상추진시험설비의 공기 혼합시스템 설계 및 제작)

  • Lee, Yagn-Ji;Kang, Sang-Hun;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.40-48
    • /
    • 2008
  • Air mixing system which is composed of air pressure control system, hot pipe system and air mixer, is the facility for mixing hot air($1000^{\circ}C$, 10kg/s) from storage air heater (SAH) and decompressed air($20^{\circ}C$, 15kg/s) from high pressure air supply system. Air pressure control system reduce the pressure of the air, from 32MPa to 3.5 MPa and supply the decompressed air to air mixer. The hot pipe system supply hot air from SAH to air mixer which mix hot with the decompressed air from air pressure control system. Fully mixed air flow rate is 25kg/s and mixed temperature is up to $400^{\circ}C$. So, we can expand the operating envelop of the supersonic ground test facility to low Mach number and low altitude region.

  • PDF

Quantitative Monitoring of Body Pressure Distribution Using Built-in Optical Sensors

  • Lee, Kang-Ho;Kwon, Yeong-Eun;Seo, Jihyeon;Lee, Byunghun;Lee, Dongkyu;Kwon, Ohwon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.279-282
    • /
    • 2020
  • In this study, body pressure was quantitatively detected using built-in optical sensors, inside an air cushion seat. The proposed system visualizes the effect of the body pressure distribution on the air cushion seat. The built-in sensor is based on the time-of-flight (ToF) optical method, instead of the conventional electrical sensor. A ToF optical sensors is attached to the bottom surface of the air-filled cells in the air cushion. Therefore, ToF sensors are durable, as they do not come in physical contact with the body even after repeated use. A ToF sensor indirectly expresses the body pressure by measuring the change in the height of the air-filled cell, after being subjected to the weight of the body. An array of such sensors can measure the body pressure distribution when the user sits on the air cushion seat. We implemented a prototype of the air cushion seat equipped with 7 ToF optical sensors and investigated its characteristics. In this experiment, the ToF optical pressure sensor successfully identified the pressure distribution corresponding to a sitting position. The data were accessed through a mobile device.

Effect of the Heights of Air Dam on the Pressure Distribution of the Vehicle Surface (에어댐의 높이가 차체 표면의 압력변화에 미치는 영향)

  • Park, Jong-Soo;Kim, Sung-Joon
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.27-34
    • /
    • 2002
  • 3-D numerical studies are performed to investigate the effect of the air dam height and approaching air velocities on the pressure distribution of notchback road vehicle. For this purpose, the models of test vehicle with four different air dam heights are introduced and PHOENICS, a commercial CFD code, is used to simulate the flow phenomena and to estimate the values of pressure coefficients along the surface of vehicle. The standard $k-{\varepsilon}$ model is adopted for the simulation of turbulence. The numerical results show that the height variation of air dam makes almost no influence on the distribution of the value of pressure coefficient along upper and rear surface but makes strong effects on the bottom surface. That is, the value of pressure coefficient becomes smaller as the height is increased along the bottom surface. Approaching air velocity makes no differences on pressure coefficients. Through the analysis of pressure coefficient on the vehicle surface, one tries to assess aerodynamic drag and lift of vehicle. The pressure distribution on the bottom surface affects more on lift than the pressure distribution on the upper surface of the vehicle does. The increase of air dam height makes positive effects on the lift decrease but no effects on drag reduction.

  • PDF

Air Pressure Regulation in Air Bladders of Ascophyllum nodosum(Fucales, Phaeophyceae)

  • Brackenbury, Angela M.;Kang, Eun-Ju;Garbary, David J.
    • ALGAE
    • /
    • v.21 no.2
    • /
    • pp.245-251
    • /
    • 2006
  • Diurnal and age-related changes in air pressure were measured in air bladders of Ascophyllum nodosum from the Atlantic coast of Nova Scotia. Exterior and interior bladder volumes vary significantly with 4 and 6 y bladders being about 40% larger than 2 y bladders (p < 0.01). Freshly collected bladders yielded a mean pressure of 40.8 ± 6.5 cm H2O. Overnight (20 h) dark treatment at 15°C generated pressure reductions by 80% in 2 y bladders but only by about 30% in 4 and 6 y bladders. Furthermore, in 2 y bladders 8 out of 11 bladders were reduced to atmospheric pressure. Pressure losses were inversely related to pressure recovery after 2.5 h in natural daylight, but after 5 h in daylight there was no significant difference in pressure within the age groups. Even under 25% of full illumination, bladders inflated to full pressure after 5 h. The results show that differences in bladder age and bladder wall thickness have roles in diurnal patterns of bladder inflation and deflation. These results confirm that bladder inflation is based on photosynthetic O2 production and not on partial pressures of O2 in the surrounding medium as was suggested for Sargassum. Chemical analyses of fluid recovered after the interior of bladders were washed with saline showed no evidence for the occurrence of surfactant that might be responsible for maintaining the air-liquid interface.

Similarity Analysis of Scale Ratio Effects on Pulsating Air Pockets Based on Bagnold's Impact Number (Bagnold 충격수를 고려한 압축 팽창하는 갇힌 공기에 미치는 축척비 효과에 대한 상사 해석)

  • Sangmook Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.193-201
    • /
    • 2023
  • A developed code based on the unified conservation laws of incompressible/compressible fluids is applied to analyze similarity in pressure oscillations caused by pulsating air pockets in sloshing tanks. It is shown that the nondimensional time histories of pressure show good agreements under Froude and geometric similarities, provided that there are no pulsating entrapped air pockets. However, the nondimesional period of pressure oscillation due to the pulsating air pocket becomes longer as the size of the sloshing tank increases. The discrepancy in the nondimensional period is attributed to the compressibility bias of the entrapped air. To get rid of the compressibility bias, the ullage pressure in a sloshing tank is adjusted based on the Bagnold's impact number. The variation in the period of pressure oscillation according to the ullage pressure is explained based on the spring-mass system. It is shown that the nondimensional period of pressure oscillation is virtually constant when the ullage pressure is adjusted based on the Bagnold's impact number, regardless of tank size. It is found that the Bagold's impact number should be the same, if the time history of pressure is important while an entrapped air pocket pulsates.

Relationship Analysis between Relative Humidity and Explosion Pressure of Hydrogen-Air and Acetylene-Air Mixtures in Flameproof Enclosure (내압방폭구조에서 수소-공기와 아세틸렌-공기 혼합가스의 폭발압력과 상대습도의 상관관계 분석)

  • Yong-Tae, Kim;Kihyo, Jung
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.4
    • /
    • pp.101-107
    • /
    • 2022
  • To test a flameproof enclosure for the safety certificate, a reference pressure of explosion needs to be determined. However, the explosion pressure may be changed according to relative humidity of explosive gases. Therefore, the guideline on relative humidity should be recommended for measuring the explosion pressure for accurate and reproducible testings. This study examined the relationship of explosion pressure with relative humidity of hydrogen (31 vol %)-air and acetylene (14 vol %)-air mixture gases. The explosion pressures were measured by increasing the relative humidity of the gases by 10 % from dry state to 80 % in a cylindrical explosion enclosure of 2.3 L. on ambient temperature and atmospheric pressure (1 atm). The maximum explosive pressures were remained almost constant until the relative humidity reached 10 % for the hydrogen-air mixture and 20 % for the acetylene-air mixture. However, the maximum explosive pressures linearly decreased as the relative humidity increased. Based on the results of the study, it would be recommended to use 10 % relative humidity for the hydrogen-air mixture and 20 % for the acetylene-air mixture as the critical value in testing a flameproof enclosure.