• 제목/요약/키워드: Air-ocean interaction

검색결과 67건 처리시간 0.03초

A Study on Integrated OWC System within Turbine Effects

  • Liu, Zhen;Hyun, Beom-Soo;Hong, Key-Yong;Lee, Young-Yeon;Jin, Ji-Yuan
    • 한국해양공학회지
    • /
    • 제24권2호
    • /
    • pp.1-9
    • /
    • 2010
  • Oscillating Water Column is one of the most widely used converting systems all over the world. The operating performance is influenced by the efficiencies of the two converting stages in the OWC chamber-turbine integrated system. In order to study the effects of the pressure drop induced by the air turbine, the experiments using the impulse turbine and the orifice device are carried out in the wave simulator test rig. The numerical simulation utilizing the orifice and porous media modules is calculated and validated by the corresponding experimental data. The numerical wave tank based on the two-phase VOF model embedded with the above modules is employed to investigate the wave elevation, pressure variation inside the chamber and the air flow velocity in the duct. The effects of the air turbine on the integrated system and interaction among the wave elevation, pressure and air flow velocities variations are investigated, which demonstrates that the present numerical model are more accurate to be employed.

FSI 해석기법을 이용한 에어건 수중발파 응답해석 검증 (Verification of Underwater Blasting Response Analysis of Air Gun Using FSI Analysis Technique)

  • 이상갑;이재석;박지훈;정태영;이환수;박경훈
    • 대한조선학회논문집
    • /
    • 제54권6호
    • /
    • pp.522-529
    • /
    • 2017
  • Air gun shock system is used as an alternative energy source as part of the attempt to overcome the restrictions of economical expense and environmental damage, etc., due to the use of explosives for the UNDerwater EXplosion (UNDEX) shock test. The objectivity of this study is to develop the simulation technique of air gun shock test for the design of model-scale one for the near field non-explosive UNDEX test through its verification with full-scale SERCEL shock test result. Underwater blasting response analysis of full-scale air gun shock test was carried out using highly advanced M&S (Modeling & Simulation) system of FSI (Fluid-Structure Interaction) analysis technique of LS-DYNA code, and was verified by comparing its shock characteristics and behaviors with the results of air gun shock test.

Application of Arbitrary Lagrangian-Eulerian Technique for Air Explosion Structural Analysis for Naval Ships Using LS-DYNA

  • Kim Jae-Hyun;Shin Hyung-Cheol;Park Myung-Kyu
    • Journal of Ship and Ocean Technology
    • /
    • 제9권1호
    • /
    • pp.38-46
    • /
    • 2005
  • Survivability improvement method for naval ship design has been continually developed. In order to design naval ships considering survivability, it is demanded that designers should establish reasonable damage conditions by air explosion. Explosion may induce local damage as well as global collapse to the ship. Therefore possible damage conditions should be realistically estimated in the design stage. In this study the authors used ALE technique, one of the structure-fluid interaction techniques, to simulate air explosion and investigated survival capability of damaged naval ships. Lagrangian-Eulerian coupling algorithm, equation of the state for explosive and air, and simple calculation method for explosive loading were also reviewed. It is shown that air explosion analysis using ALE technique can evaluate structural damage after being attacked. This procedure can be applied to the real structural design quantitatively by calculating surviving time and probability.

파랑과 정사각형 배열의 원형 기둥 구조물의 상호작용 수치해석 (Numerical Analysis of Four Circular Columns in Square Array and Wave Interaction)

  • 송성진;박선호
    • 해양환경안전학회지
    • /
    • 제23권5호
    • /
    • pp.558-565
    • /
    • 2017
  • 해양환경의 극한 환경조건에 노출 된 고정식 및 부유식 해양구조물의 안전성과 설계비용 효율성에 있어서 파랑-구조물 상호작용의 정확한 예측은 중요하다. 본 연구에서는 규칙파 중 원형 기둥에 대한 파랑-구조물 상호작용을 해석하였다. 3차원 이상유동(two-phase flow)을 해석하기 위해 오픈소스 전산유체역학 라이브러리인 오픈폼을 사용하였다. 4개의 원형기둥이 정사각형 배열을 이루고 있을 때 규칙파의 입사각도에 따른 상호작용을 해석하였다. 원형 기둥 구조물에서의 wave run-up을 입사파의 기울기에 따라 비교하였다. 원형 기둥과 입사파의 상호작용으로 인해 원형 기둥 사이에 높은 파가 생성되는 것을 확인하였다. 본 해석 결과는 구조물과 입사파의 상호작용에 의한 air gap에 대한 연구의 기초자료로 활용될 것으로 기대된다.

Energy extraction from the motion of an oscillating water column

  • Wang, Hao;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.327-348
    • /
    • 2013
  • An Oscillating Water Column (OWC) is a relatively practical and convenient device that converts wave energy to a usable form, which is electricity. The OWC is kept inside a fixed truncated vertical cylinder, which is a hollow structure with one open end submerged in the water and with an air turbine at the top. This research adopts potential theory and Galerkin methods to solve the fluid motion inside the OWC. Using an air-water interaction model, OWC design for energy extraction from regular wave is also explored. The hydrodynamic coefficients of the scattering and radiation potentials are solved for using the Galerkin approximation. The numerical results for the free surface elevation have been verified by a series of experiments conducted in the University of New Orleans towing tank. The effect of varying geometric parameters on the response amplitude operator (RAO) of the OWC is studied and modification of the equation for evaluating the natural frequency of the OWC is made. Using the model of air-water interaction under certain wave parameters and OWC geometric parameters, a computer program is developed to calculate the energy output from the system.

평판의 유탄성 거동에 관한 실험적 연구 (Experimental Study on the Fluid-structure Interaction of Flexible Plate)

  • ;노인식;현범수
    • 대한조선학회논문집
    • /
    • 제44권6호
    • /
    • pp.619-626
    • /
    • 2007
  • This paper presents an experimental study on deformations and force characteristics of flexible plates both in air and water. The focus is on the complicated interaction problem between the fluid and flexible structures. The displacements and forces of free oscillating plates are measured and compared with each others. The effects of several plate coefficients are investigated i.e. plate thickness, aspect ratio, plate area, plate width ratio, bending angle. For the verification of the experimental results, some of them are compared with numerical simulation and show reasonable agreements.

VOF 기반의 수치조파수조를 이용한 OWC 통합시스템 성능연구에 대한 고찰 (Review of Application of VOF-Based NWT on Integrated OWC System)

  • 류진;김길원;현범수;홍기용
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제15권2호
    • /
    • pp.111-117
    • /
    • 2012
  • 진동수주형 파력발전장치는 가장 널리 사용되는 파력에너지 변환장치이다. 시스템의 작동성능은 1차 변환장치인 공기실 성능과 2차 변환장치인 터빈의 성능에 지배적인 영향을 받는다고 볼 수 있다. 본 연구에서는 터빈의 영향을 시스템에 적용하기 위하여 오리피스 모델을 채택하여 성능을 검증하였고 공기실 성능예측을 위하여 VOF 기반의 수치조파수조가 사용되었다. 터빈의 영향을 고려했을 때, 공기실 내부에서 일어나는 공기와 물의 복잡한 상호작용을 수치적인 방법을 이용하여 예측하였다. 입사파 조건 및 다양한 공기실 형상이 시스템 성능에 미치는 영향에 대하여 고찰하였고, 터빈의 영향을 고려한 공기실 내의 수면, 압력, 유량의 변화를 실험적 및 수치적으로 고찰하여 비교분석을 수행하였다.

Numerical Simulation of 3D Free-Surface Flows by Using CIP-based and FV-based Methods

  • Yang, Kyung-Kyu;Nam, Bo-Woo;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • 제1권3호
    • /
    • pp.136-143
    • /
    • 2011
  • In this paper, three-dimensional free-surface flows are simulated by using two different numerical methods, the constrained interpolation profile (CIP)-based and finite volume (FV)-based methods. In the CIP-based method, the governing equations are solved on stationary staggered Cartesian grids by a finite difference method, and an immersed boundary technique is applied to deal with wave-body interactions. In the FV-based method, the governing equations are solved by applying collocated finite volume discretization, and body-fitted meshes are used. A free-surface boundary is considered as the interface of the multi-phase flow with air and water, and a volumeof-fluid (VOF) approach is applied to trace the free surface. Among many variations of the VOF-type method, the tangent of hyperbola for interface capturing (THINC) and the compressive interface capturing scheme for arbitrary meshes (CICSAM) techniques are used in the CIP-based method and FV-based method, respectively. Numerical simulations have been carried out for dam-breaking and wave-body interaction problems. The computational results of the two methods are compared with experimental data and their differences are observed.