• 제목/요약/키워드: Air-jet method

검색결과 206건 처리시간 0.028초

횡단 공기유동장으로 분사되는 저온 에탄올 제트의 침투거리 (Penetration Height of Low-temperature Ethanol Jet Injected Into a Crossflow Airstream)

  • 이종권;구자예
    • 한국분무공학회지
    • /
    • 제25권2호
    • /
    • pp.74-80
    • /
    • 2020
  • The jet in crossflow is a spray method used in the various air-breathing engine. In order to understand the spray characteristics in various environments, many prior studies have been conducted. However, there is a lack of understanding of the low-temperature liquid spray characteristics below 273 K. With this in mind, we tried to enhance the knowledge of the low-temperature liquid spray characteristics by identifying the penetration height of low-temperature ethanol. The experiment was conducted under phase pressure, and 273 K of air and 293, 263, and 233 K of ethanol was used. Shadowgraphy was employed to measure the liquid penetration, and Otsu's method was used to analyze the penetration height. The heights tend to decrease as the temperature of the liquid jet decreases. A correlation for the penetration height in the experimental conditions was derived and presented.

The Effect of Ambient Air Condition on Heat Transfer of Hot Steel Plate Cooled by an Impinging Water Jet

  • Lee, Pil-Jong;Park, Hae-Won;Lee, Sung-Hong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.740-750
    • /
    • 2003
  • It has been observed that the cooling capacity of an impinging water jet is affected by the seasonal conditions in large-scale steel manufacturing processes. To confirm this phenomenon, cooling experiments utilizing a hot steel plate cooled by a laminar jet were conducted for two initial ambient air temperatures (10$^{\circ}C$ and 40$^{\circ}C$) in a closed chamber, performing an inverse heat conduction method for quantitative comparison. This study reveals that the cooling capacity at an air temperature of 10$^{\circ}C$ is lower than the heat extracted at 40$^{\circ}C$. The amount of total extracted heat at 10$^{\circ}C$ is 15% less than at 40$^{\circ}C$ , These results Indicate the quantity of water vapor, absorbed until saturation, affects the mechanism of boiling heat transfer.

장대형 터널 내 제트 팬 위치에 따른 환기해석 (Ventilation Analysis according to Jet Fan Location in Long Tunnel)

  • 강신형;변주석;이진호
    • 설비공학논문집
    • /
    • 제19권5호
    • /
    • pp.386-393
    • /
    • 2007
  • This paper studies the ventilation characteristics according to the jet fan location at the long road tunnel using the CFD software 'FLUENT' which is based on the finite volume method. The tunnel model used in the analysis has a length of 1600m, a cross sectional area of $120m^3$, and is composed of 3 lanes and one way. The velocity profile, the distribution of CO concentration and the ventilation flow rate within the tunnel are analyzed, respectively. In the analysis, it is found that the dependence of the ventilation flow rate upon the jet fan location is small, but the CO concentration in the tunnel is at the lowest when the jet fans are installed near the tunnel outlet. An air stream right below the jet fan is almost inactive due to the strong stream injection near the jet fan. Thus, the pollution level below the jet fan must be higher than the other area.

PIV에 의한 수중램제트추진의 기본특성에 관한 연구 (A Study on Fundamental Characteristics of Underwater Ram-Jet Propulsion by PIV)

  • 양창조;김춘식;최민선;김진구;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.36-42
    • /
    • 2000
  • A fundamental experimental study for an alternative proposal to super-speed craft propulsion system called underwater ram-jet propulsion by high pressure air ejection as driving force was investigated. For basic study of the effects of ram-jet propulsion performance, a simple underwater ram-jet flow field was established and PIV(Particle Image Velocimetry) method was adopted to analyse the jet-induced flow appearing at ram intake, mixing chamber and nozzle. Some flow dynamics relating to the high-speed ram-jet effect were discussed for the basic understanding of the its propulsion principle.

  • PDF

에어분사구 설치에 따른 폴리우레아 도막 방수·방식재의 비산 발생 저감에 관한 연구 (A study on the Reduction of Scattering of Polyurea Coating for Waterproofing and Anti-Corrosion by Installing Air Jet Nozzle)

  • 김선도;박완구;박진상;조일규;김병일;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.236-237
    • /
    • 2017
  • This study discusses the development of waterproofing layer jet-spray nozzle that forms a three-dimensional air cell. This nozzle has an air flow generation mechanism in the air groove of the attachment cell part located at the end of the injection nozzle. Since the air grooves also function as an air curtain, the airborne particles generated when the waterproof material is sprayed is effectively blocked. In the past, spraying of the waterproof material through the high pressure was possible, but this technology allows stable injection due to the static agitation method, and various problems caused by particle generation has been (damages to neighboring areas, economic loss, etc.) minimized.

  • PDF

공기분사 기법을 이용한 충돌형 제트 분사기의 연소 안정성 평가에 관한 수치적 연구 (A Numerical Study on Combustion-Stability Rating of Impinging-Jet Injector Using Air-Injection Technique)

  • 손채훈;박이선
    • 대한기계학회논문집B
    • /
    • 제30권11호
    • /
    • pp.1093-1100
    • /
    • 2006
  • Combustion stability rating of jet injector is conducted numerically using air-injection technique in a model chamber, where air is supplied to oxidizer and fuel manifolds of the model five-element injector head. A sample F(fuel)-O(oxidizer)-O-F impinging-jet injector is adopted. In this technique, we can simulate mixing process of streams flowing through oxidizer and fuel orifices under cold-flow condition without chemical reaction. The model chamber was designed based on the methodologies proposed in the previous work regarding geometrical dimensions and operating conditions. From numerical data, unstable regions can be identified and they are compared with those from air-injection acoustic and hot-fire tests. The present stability boundaries are in a good agreement with experimental results. The proposed numerical method can be applied cost-effectively to stability rating of jet injectors when mixing of fuel and oxidizer jets is the dominant process in instability triggering.

오목한 표면위에 분사되는 경사충돌제트에 대한 국소열전달계수의 측정 (Local heat transfer measurement from a concave surface to an oblique impinging jet)

  • 임경빈;김학주
    • 설비공학논문집
    • /
    • 제10권3호
    • /
    • pp.324-333
    • /
    • 1998
  • Measurements of the local heat transfer coefficients on a hemispherically concave surface with a round oblique impinging jet were made. The liquid crystal transient method was used for these measurements. This method, which is a variation of the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystal for the surface temperature measurements. The Reynolds number used was 23,000 and the nozzle -to -jet distance was L/d=2, 4, 6, 8 and 10 and the jet angle was $\alpha$=0$^{\circ}$, 15$^{\circ}$, 30$^{\circ}$and 40$^{\circ}$. In the experiment, the maximum Nusselt number at all region occurred at L/d(equation omitted)6 and Nusselt number decreases as the inclined jet angle increases. For the normal jet the contours of constant Nusselt number are circular and as the jet is inclined closer and closer to the surface the contours become elliptical shape. The decreasing rate of the Nusselt number at X/d> 0(upstream) on a surface curvature are higher than those on a flate plate and the decreasing rate of the Nusselt number at X/d <0(downstream) on a surface curvature are lower than those on a flate plate. And also, the decreasing rate of local Nusselt number distribution at X/d <0(upstream) exhibit lower than with X/d <0(downstream) as jet angle increases. The second maximum Nusselt number occurred at long distance from stagnation point as jet angle increases.

  • PDF

제한공간에 설치된 제트팬의 기류특성 예측 (Prediction of the Flow Characteristics of Jet Fan in a Confined Space)

  • 이재헌;환유준;김경환;임윤철;오명도;김종필
    • 설비공학논문집
    • /
    • 제14권3호
    • /
    • pp.206-213
    • /
    • 2002
  • In this paper, the flow characteristics of an axial fan spraying isothermal compact jet in a confined space were investigated by the experimental methods, the numerical method, and the free jet theory According to the results, the numerical result and the experimental result are agreed well qualitatively and different quantitatively within $\pm1.0%$ for the centerline velocity, the entrainment ratio, and the maximum throw. However, the free jet theory can reasonably predict the centerline velocity except the entrainment ratio and the maximum throw. In other words, the entrainment ratio and the maximum throw by 1.he free jet theory are hard to estimate the characteristics of jet because of restriction of c confined space.

제트팬 노즐내부 유동에 대한 고정익 출구 원주속도의 영향 (Effect of Circumferential Velocity from Guide Vane on the Nozzle Flow of a Jet Fan)

  • 최충현;이재헌
    • 설비공학논문집
    • /
    • 제13권3호
    • /
    • pp.209-216
    • /
    • 2001
  • A numerical study is peformed to investigate the effect of circumferential velocity generated by the guide vane on the nozzle flow of a jet fan, s a way of increasing the penetration force of jet fan with nozzle of 175mm diameter. For the validation of numerical results. the velocity is measured by a 5-hole pitot tube and flow visualization is conducted by the tuft method. Under the inlet condition that the maximum circumferential velocity in the stator outlet of the present jet fan is 1.8m/s, the axial velocity in the nozzle outlet has the feature that the velocity at the axis is low and the velocity near the wall high. Therefore, to increase the throw length of the jet fan, the configuration of the fairing and nozzle needs to be developed and the precise revise of the stator angle is required, In addition, the bigger the circumferential velocity, the smaller the axial velocity at the axis and the bigger non-uniformity of the flow distribution.

  • PDF

맥동주파수의 변화에 따른 충돌제트의 열전달 특성 (Heat Transfer Characteristics Of Impinging jet with Pulsating Frequency)

  • 김용일;박복춘;백병준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.278-284
    • /
    • 2000
  • The method of Impinging jet was applied lots of part in industrial field as a cooling of as gas turbine blade, a annealing of metal and plastic sheets, drying of textile, veneer paper, X-ray medical devices, laser weapons and electronic components. This study's main factor is reciprocating Jet impingement perpendicular to the heated Surface. We researched the effect of heat transfer and enhancement with pulsating air jet. The pulsating air jet has an improvement in pulsating Frequencies((f= 0.5, 1, 1.5, 3Hz) and nozzle-to-plate distances($l/d=\;2{\sim}4,\;6{\sim}8,\;4{\sim}6,\;8{\sim}10$).

  • PDF