• 제목/요약/키워드: Air-heating

검색결과 2,327건 처리시간 0.027초

집단 에너지 시설에 의한 주변 대기질 영향 (The influence on air quality of the surroundings by the facility of the district heating)

  • 연익준;주소영;이민희;손종렬;김광렬
    • 환경위생공학
    • /
    • 제17권2호
    • /
    • pp.18-25
    • /
    • 2002
  • The comparison of the air quality with the evaluation of the environmental assessment before and after operations of the heat source and of the flue-gas desulfurization facilities were studied. First of all, several sites were selected for the representative sample points, and then they were examined air quality of the surroundings. The results were that TSP(total suspended particulate) analysis after an operation of the heat source facility was $74~81{\mu}g/m^3$, PM-10 was $31~94{\mu}g/m^3$, and $SO_2$concentration was 0.002~0.009ppm, respectively. As the result of examination to the concentrations of diffused pollutants, there was no relations between TSP concentration of sample points and the effect of air quality according to the heating source. When we compared the neighbored area of the heating source with the other area, the concentration of air pollutants after an operation of the facility of the heating source was similar to the heating source, the neighbored area, and the other area. So we concluded that there was no the effect of the air pollution by producted pollutants from the heating source.

온기의 가치평가 및 난방비 배분방법론 제안 (A Suggestion for the Worth Evaluation of Warm Air and the Allocation Methodology of Heating Cost)

  • 김덕진
    • 설비공학논문집
    • /
    • 제20권10호
    • /
    • pp.654-661
    • /
    • 2008
  • Our government will make a plan regulating the cooling limit temperature of the summer season to 26 degree and the heating limit temperature of the winter season to 20 degree for energy saving. Where, the key point of this politic pursuit can be the charge system on heating and cooling cost. Currently, the heating and cooling cost are charged as much as the volume or heat flow rate regardless of the high and low room temperature. However, we have suggested new cost estimating methodology as a worth method in the precedent study, and preformed the worth evaluation and cost allocation of electricity and heat on various cogenerations. In this study, we applied the suggested worth method to four kind of warm air, and preformed the worth evaluation and cost allocation of each warm air. As a result, the more energy a customer saved, the more heating unit cost decreased, and the more energy a customer consumed, the more heating unit cost increased. From this analysis, we hope that the suggested worth methodology can offer a theoretical basis to the politic pursuit of government, and induce the spontaneous energy saving of consumers.

지하공기를 이용하는 농업시설용 난방시스템 (Performance of Heat Pump System Using Underground Air as Heat Source)

  • 강연구;유영선;김영화;성문석;김종구;장재경;이형모
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.587-589
    • /
    • 2009
  • The districts of underground geologic structure in Jeju island where underground air is distributed are lava cave, pyroclastic, open joint, and crushing zone. Such districts are identified to secure an enough airflow when air ventilation layer is to secure 25-35m in depth. In Jeju, Ground air is used for heating greenhouse and fertilizing natural $CO_2$ gas by suppling directly into greenhouse. But the heating method by suppling ground air into greenhouse directly bring about several problem. The occurrence of disease of the crops by high humidity is worried because the underground air which becomes discharge from underground air layer has over 90% relative humidity. The underground air is inadequate in heating for crops which need high temperature heating such as mangos, Hallbong and mandarin orange because the temperature of it is $15{\sim}18^{\circ}C$. Also There is worry where the ventilation loss becomes larger because the air pressure inside greenhouse is high by supplying underground air directly. In this study the heat pump system using underground air as heat source was developed and heating performance of the system was analysed. Heating COP of the system was 2.5~5.0 and rejecting heat into greenhouse and extracting heat from underground air were 40,000~27,000 kcal/h, 30,000~18,000 kcal/h respectively.

  • PDF

바닥 복사난방 배관설비에서 배관파열 사례 연구 (A Case Study on the Plumbing Pipe Burst of Floor Radiant Heating)

  • 정홍도;신용한;박진관;정효민;정한식
    • 설비공학논문집
    • /
    • 제24권10호
    • /
    • pp.745-749
    • /
    • 2012
  • Heating pipes burst was occurred in the apartment complex that was applied floor radiant heating system. There were two opinions for the cause of the bursted heating pipes that was the flaw during construction and defects in the product and also there were conflicting among them. Officials analyzed it in order to investigate the cause of the rupture. Tensile test results showed different tensile strength between the lower part of heating pipe and the upper part of heating pipes. The lower tensile strength is maintained while the top was not secured. The reason why rupture heating pipes is that flow velocity isn't secured and then the air get stagnant. Stagnant air makes hardening. It is caused rupturing. The proper flow rate was confirmed 0.166 m/sec after experiment. It isn't make stagnant air inside heating pipes.

간헐난방주택에 대한 외기온도 예측제어 적용 연구 (Application of the Outdoor Air Temperature Prediction Control for Intermittent Heating Residences)

  • 태춘섭;조성환;이충구
    • 설비공학논문집
    • /
    • 제13권8호
    • /
    • pp.682-691
    • /
    • 2001
  • Most of radiant floor heating systems are operated in the intermittent heating mode in Korea. The application possibility of predictive suboptimal control for Koran residential house was investigated by computer simulation and experiment. For this study, TRNSYS program was used and an experimental facility consisting of tow rooms ($3\times4.4\times2.8 m$) identical in construction was built. The facility enabled simultaneous comparison of two different control method. And real multi residential hose was investigated. Results showed that outdoor air temperature prediction control was superior to the conventional control for radiant floor heating system operated in the intermittent heating mode. New control system resulted in good thermal environment and les energy consumption.

  • PDF

평판식 태양열 공기가열기의 성능에 관한 연구 -도장재료, 도장방법 및 공기통로 구조를 중심으로- (A Study on the Performance of Ak Heaters -Black Coating Materials, Coating Methods and Structure of Air Path-)

  • 박종길;연광석;차균도
    • 한국농공학회지
    • /
    • 제21권1호
    • /
    • pp.78-85
    • /
    • 1979
  • In order to obtain the basic data for designing optimum flat plate solar air heaters, which can be operated with relatively low temperature for drying farm products, 8 different treatment of solar air heaters were devised and tested for their heating performances and efficiencies. The results were analised and summarized as follows. 1. The primary factors, structure of air path (C), black coating materials (A) and bottom coating methods (B) showed very high significant effect of far above 1% level. With respect to the mutual multiplying effect of secondary factors, 1% level of significance was found with coating materials and methods (AB), and 5% level of significance was found with coating materials and air path structure (AC). 2. The heating performance of the air heaters with winding air path showed about twice those with straight air path. 3. The Korean black ink which is less expensive than dim oil paint showed 3-4% better heating efficiencies as the black coating material of flat plate solar air heaters. 4. The heating efficiencies of the solar air heaters whose bottoms were not black coated were 2-3% higher than those with black coated bottoms. 5. The highest heating efficiency of solar air heater among 8 different treatment was found in the plot of Korean black ink-bottom not coated-winding air path showing 29.0-34.5%

  • PDF

급기각도가 사무실 공간의 냉방 및 난방 성능에 미치는 영향 (The Effect of Supply Angle on Cooling and Heating Performances of Office Space)

  • 김묘선;김영일;정광섭
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.497-501
    • /
    • 2009
  • Effect of angle of supply air on cooling and heating performances of office space is studied by numerical simulation. For a constant air volume(CAV) air-conditioning system, air is supplied vertically($90^{\circ}$) and horizontally($10^{\circ}$). Due to buoyancy, the supply angle affects the performance of cooling and heating. In cooling, since the cold supply air tends to move downward due to its high density, horizontal supply angle is better for uniform temperature distribution. In heating, however, vertical supply angle is preferred for better mean and uniform temperature distribution.

  • PDF

PWM 방식과 인버터 방식을 사용한 시스템 에어컨의 성능평가에 대한 실험적 연구(난방저온 특성) (Experimental Study on Performance Evaluation of System A/C using PWM or Inverter Method (Heating Characteristics at Low Temperature Conditions))

  • 김대훈;전용호;권영철;이윤수;문제명;홍주태
    • 설비공학논문집
    • /
    • 제15권7호
    • /
    • pp.551-556
    • /
    • 2003
  • The present study concerns an experiment on the heating characteristics of a system air-conditioner (A/C) using PWM method or inverter method at low temperature con-ditions. The compressors used are digital scroll type and BLDC inverter type. Under the low outside temperature condition, -5$^{\circ}C$, -1$0^{\circ}C$, -15$^{\circ}C$, heating capacities and COPs are mea-sured by the psychometric calorimeter using air enthalpy method. Also, outlet air temperatures at heating operation mode are measured at -5$^{\circ}C$, -1$0^{\circ}C$ and -15$^{\circ}C$. Experimental results show that COPs of the system A/C using a PWM method are more effective than those of the inverter method at heating operation mode. Although the heater is on, COPs of PWM method are similar to those of BLDC inverter method. Moreover, the heating capacities of PWM method at -5$^{\circ}C$, -1$0^{\circ}C$ and -15$^{\circ}C$ are larger about 10~20% and outlet air tempe-rature at -15$^{\circ}C$ is larger about 10%, compared to the inverter method.

열펌프에 의한 그린하우스 난방시스템의 열특성과 시뮬레이션 모델개발 (Thermal Characteristics and Simulation Model Development for Greenhouse Heating System with Heat Pump)

  • 노정근;송현갑
    • Journal of Biosystems Engineering
    • /
    • 제26권2호
    • /
    • pp.155-162
    • /
    • 2001
  • The greenhouse heating system with heat pump was built for development of simulation model and validation. The computer simulation model for the system to predict temperature of air and soil and moisture content of soil in the greenhouse were developed, and its validity was justified by actual data. From the analysis of experimentally measured data and the simulation output, following results were obtained. 1. The expected values of inside air temperature for the heating system with heat pump were very much close to the experimental values. 2. In the heating system with heat pump, the expected values of day time surface temperature of soil by computer simulation were very much similar to the measured values, but those of night time were higher than the measured value by at most 2.0$\^{C}$. 3. The simulation model predicted temperature of greenhouse film as of 1$\^{C}$ below than the mean value of ambient air and greenhouse air temperature. 4. Heat loss value of daytime was found to be larger than that of nigh as much as 1.3 to 2.3 times for the heating system with heat pump. 5. In the heating system with heat pump, when the lowest ambient temperature was -8$\^{C}$∼-7$\^{C}$ the air temperature of greenhouse was 5$\^{C}$∼6$\^{C}$, thus the heat pump heating system contributed in greenhouse heating by 13$\^{C}$.

  • PDF

제주지역 지하공기를 이용한 농업시설용 히트펌프시스템의 난방 성능 분석 - 제주지역을 중심으로 - (The Analysis of heating performance of heat pump system for agricultural facility using underground air in Jeju area - Focused on the Jeju Area -)

  • 강연구;임태섭
    • KIEAE Journal
    • /
    • 제16권6호
    • /
    • pp.109-114
    • /
    • 2016
  • Purpose: The underground air is the warm air discharged from the porous volcano bedrock 30-50m underground in Jeju, including excessive humidity. The temperature of the underground air is $15-20^{\circ}C$ throughout the year. In Jeju, the underground air was used for heating greenhouses by supplying into greenhouses directly. This heating method by supplying the underground air into greenhouses directly had several problems. The study was conducted to develop the heat pump system using underground air as heat source for resolving excessive humidity problem of the underground air, adopting the underground air as a farm supporting project by Ministry of Agriculture, Food and Rural Affairs(MAFRA) and saving heating cost for agricultural facilities. Method: 35kW scale(10 RT) heat pump system using underground air installed in a greenhouse of area $330m^2$ in Jeju-Special Self-Governing Province Agricultural Research & Extension Services, Seogwipo-si, Jeju. The inlet and outlet water temperature of the condenser, the evaporator and the thermal storage tank and the underground air temperature and the air temperature in the greenhouse were measured by T type thermocouples. The data were collected and saved in a data logger(MV200, Yokogawa, Japan). Flow rates of water flowing in the condenser, the evaporator and the thermal storage tank were measured by an ultrasonic flow meter(PT868, Panametrics, Norway). The total electric power that consumed by the system was measured by a wattmeter(CW240, Yokogawa, Japan). Heating COP, rejection heat of condenser, extraction heat of evaporator and heating cost were analyzed. Result: The underground air in Jeju was adopted as a farm supporting project by Ministry of Agriculture, Food and Rural Affairs(MAFRA) in 2010. From 2011, the heat pump systems using underground air as a heat source were installed in 12 farms(16.3ha) in Jeju.