• Title/Summary/Keyword: Air-guide

Search Result 291, Processing Time 0.032 seconds

An Evaluation of User's Facility and Suggestion for the Improvement on the Interior Design of Metropolitan Railroads Trains - Focus on the opening 14 metropolitan railroad lines in Seoul through checklist - (도시철도 차량 실내의 이용자 시설 평가와 개선방향 - 체크리스트를 통하여 수도권 노선에 운행 중인 14개 철도 차량을 대상으로 -)

  • Moon, Suh-Hyun;Kim, Gu-Seul;Shin, Kyung-Joo
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.5
    • /
    • pp.11-20
    • /
    • 2010
  • User-oriented Design is necessary in planning the interior design of Metropolitan Railroads trains, since this is a typical means of transportation in this modem society and all ages people with different body scale use this facility. However, there are little studies about facility panning and zoning of Metropolitan Railroads train considering users. Therefore, in this study, after completing the checklist based on the current legal standards of facility installation of South Korea and Japan, we examined user's facility and suggest several improvement of the opening 14 metropolitan railroad lines in Seoul. Then, we evaluated this facilities according to 41 standards; general facility(24 standards), safety facility(4 standards), guide facility(11 standards), other facility(4 standards). The result of this study may be summarized as follows. 1) General facility has to be designed to obtain lots of room for storage and this facility should be fixed up tightly with secure system. 2) Safety facility should be designed to minimize a difference of floor-level between threshold of train and ground. Also, using various color and material could help passengers to distinguish different space and facility. 3) Guide facility should be designed to guide passengers to the accurate direction with proper sign design in the pathway of Metropolitan railroad train. Also, more various color, which based on the research about physiological and psychological effect, should be used to guide people. 4) Other facility should equip more visual system using common good and informative contents. Through this study, we try to understand the current interior physical condition of Metropolitan Railroads trains. However, for future studies, it is expected to supplement evaluation standards considering aesthetic design, environmental improvement of indoor air quality and the satisfaction and demand of Metropolitan Railroads trains.

The performance of combined heat and power plant according to gas turbine air mass flow rate change (가스터빈 공기량 조절에 따른 열병합발전 성능 변화)

  • Kim, Jae-Hoon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.18 no.2
    • /
    • pp.32-40
    • /
    • 2022
  • In this study, we investigated the operation data of combined heat and power in accordance with the change of the inlet guide vane with partial load. The partial load 80% could close the inlet guide vane up to 24%, and the exhaust gas temperature could be increased by 52℃. The partial load 90% could close the inlet guide vane up to 12%, and the exhaust gas temperature could be increased by 23℃. At 80% of partial load with the thermal load tracking mode, the output could be increased up to 5.68 MW, the combined cycle efficiency increased by 0.73%, and the combined heat and power efficiency increased by 1.81%. At 90% of the partial load, the output could be increased up to 2.55 MW, the combined cycle efficiency increased by 0.32%, and the combined heat and power efficiency increased by 0.72%.

  • PDF

Air-gap Signal Treatment at rail-joint in Maglev System (자기부상시스템에서 레일 이음매 통과시 공극 처리방법)

  • Sung, H.K.;Jho, J.M.;Lee, J.M.;Bae, D.K.;Kim, B.S.;Kim, D.S.;Shin, B.C.
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.310-312
    • /
    • 2006
  • Maglev using EMS becomes unstable by unexpected big air-gap disturbance. The main causes of the unexpected air-gap disturbance are step-wise rail joint and large distance between rail splices. For the stable operation of the Maglev, the conventional system uses the threshold method, which selects one gap sensor among two gap sensors installed on the magnet to read the gap between magnet and guide rail. But the threshold method with a wide bandwidth makes the discontinuous air-gap signal at the rail joints because of the offset in air gap sensors and/or the step-wise rail joins. Further more, in the case of the one with a narrow bend-width, it makes Maglev system unstable because of frequent alternation. In this paper, a new method using fuzzy rule to reduce air-gap disturbances proposed to improve the stability of Maglev system. It treats the air-gap signal from dual gap sensors effectively to make continuous signal without air gap disturbance. Simulation and experiment results proved that the proposed scheme was effective to reduce air-gap disturbance from dual gap sensors in rail joints.

  • PDF

An Experimental Study on the Characteristics of Temperature Distribution in Internal Space of a Tube for the Formal Change of Counterflow Type Vortex Tube (대향류형 보텍스 튜브의 노즐형상 변화011 따른 튜브 내부의 온도분포에 관한 실험적 연구)

  • 황승식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.69-76
    • /
    • 2002
  • The aim of this study is to provide fundamental informations that make it possible to use a cool stream and a hot stream simultaneously. We changed the pressure of compressed air that flows into a tube, the inner diameter of orifice that a cold stream exits, and the mass flow rate ratio. And in each case, we measured the temperature of a cold stream and a hot stream in each exit of a tube. Also we measured the axial and the radial temperature distribution in internal spare of a tube. From the study, fellowing conclusive remarks 7an be made. First, As the number of nozzles increase, separation point move into the hot exit. Second, When we use guide vane type nozzle, the axial temperature distribution constant over the 0.75 of air mass flow rate radio. Third, When we use Spiral type nozzle, axial and radial temperature distribution in the inner space is higher than another nozzle. Fourth, Axial and radial temperature distribution in the inner space vortex-tube is determined by separation point. And separation point is moved by changing of air mass flow rate ratio. At last, A heating apparatus is possible far vortex-tube to use.

Numerical Analysis of Heat Transfer Characteristics inside a Solenoid Motor System (Solenoid 전동기의 냉각을 위한 수치해석적 연구)

  • Jung, Min-Chae;Yoon, Sang Gil;Yoon, Dong Jin;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.99-104
    • /
    • 2020
  • In this study, the temperature distribution and heat transfer characteristics of each component in a solenoid motor system were numerically investigated when heat is generated by the steel pad attached to the solenoid ring of the motor. It was found that the internal airflow was complicated by the inflow velocity of air and the rotation of guide rollers and solenoid rings. Based on the numerical results, the tendency for temperature changes in the steel panel was lower due to the contact of the cooling air in the front in the rotational direction, and the peak temperature was at the front of the center. In particular, it was confirmed that as the air inflow rate was increased, the temperature was reduced due to strong convection. The temperature of the iron plate pad was decreased as the convective heat transfer coefficient was linearly increased with increasing airflow around the solenoid ring. In addition, the temperature of the iron plate panel was rapidly increased with increasing heat generation.

Effect of Air Admission on Pressure Pulsation in a Francis Turbine (급기가 프란시스 수차의 수압 맥동에 미치는 영향)

  • Jeon, Yunheung;Park, Sihoon;Choi, Hansu;Park, Jungwan
    • New & Renewable Energy
    • /
    • v.10 no.4
    • /
    • pp.9-15
    • /
    • 2014
  • In this study pressure and shaft torque pulsation were measured with variation of head and flow during the model test for a 15 MW Francis Turbine. Pressure pulsations were measured at the inlet of the spiral casing and 4 points in the cone of the diffuser and shaft torque pulsation at the upper position of the turbine. The maximum amplitude of pressure pulsation appeared 2.03% of the maximum rated head with the frequency of 25% of the rated revolution and at the guide vane opening of $10^{\circ}$. Shaft torque pulsation appeared 0.01% of the rated shaft torque, fairly low value. Air was admitted through the cone and pressure pulsation gradually decreased with increase of air flow and kept nearly constant after 5% of the rated flow. A new Francis turbine of which specific speed is 115 m-kW had been designed to rehabilitate the old one and the model test was performed at EPFL. The commercial code, STAR-$CCM^+$ was used for numerical simulation of flow.

Exploration of the teaching method for the prescription of the misconceptions on the Candle Experiment (촛불 실험과 관련된 오개념 교정을 위한 지도방안 탐색)

  • 전우수
    • Journal of Korean Elementary Science Education
    • /
    • v.18 no.2
    • /
    • pp.145-151
    • /
    • 1999
  • There is an experiment in the elementary science textbook which a burning candle hold upright in a water tank and a beaker is converted over the burning candle, the candle flame goes out and the water rises into the beaker. Some reference books including teachers' guide for the elementary school teachers explain the reason why water rises that oxygen is "used up", so water rises the same volume of consumed oxygen into the beaker. But this explanation is only partially correct. In this study, discrepancies of the explanation that oxygen is "used up" are analyzed. Water rises by two major reasons. One is that water can rise to the level about l/3 of the volume of consumed oxygen. The other is that the beaker is converted over the burning candle which produces hot CO2 and water vapor, and the candle's flame heats the air around it to expand, after the candle flame goes out, the air in the beaker cools and water vapor changes to liquid water, so, air pressure in the beaker is reduced, and the water is pushed into the beaker by great air pressure outside. 1 demonstrate a inquiry teaching method of the candle experiment.

  • PDF

Effect of air inflow on the performance of a 50kW-class cross-flow turbine (50kW급 횡류수차 내 공기 유입이 성능에 미치는 영향)

  • Kim, Jun-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.418-423
    • /
    • 2014
  • Small hydropower has been considered as a solution to resolve the problem of exhaustion of fossil fuel and industrial pollution. In this study, we developed and tested a Cross-Flow Turbine with two guide vanes to optimize the small hydropower for the site condition with large fluctuation of head and flow rate. Furthermore, in the condition of constant inlet head, CFD analysis was carried out to analyze the effect of air suction and valve position on the performance characteristics. The results showed that the air suction can minimize the hydraulic loss caused by the Recirculation flow in the runner passage and flow impact on main shaft so that it can increase the turbine efficiency and output power.

Research on the motion characteristics of a trans-media vehicle when entering water obliquely at low speed

  • Li, Yong-li;Feng, Jin-fu;Hu, Jun-hua;Yang, Jian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.188-200
    • /
    • 2018
  • This paper proposes a single control strategy to solve the problem of trans-media vehicle difficult control. The proposed control strategy is just to control the vehicle's air navigation, but not to control the underwater navigation. The hydrodynamic model of a vehicle when entering water obliquely at low speed has been founded to analyze the motion characteristics. Two methods have been used to simulate the vehicle entering water in the same condition: numerical simulation method and theoretical model solving method. And the results of the two methods can validate the hydrodynamic model founded in this paper. The entering water motion in the conditions of different velocity, different angle, and different attack angle has been simulated by this hydrodynamic model and the simulation has been analyzed. And the change rule of the vehicle's gestures and position when entering water has been obtained by analysis. This entering water rule will guide the follow-up of a series of research, such as the underwater navigation, the exiting water process and so on.

A 3-Dimensional Numerical Simulation of Impulse Turbine for Wave Energy Conversion

  • Lee, Hyeong-Gu;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.535-541
    • /
    • 2003
  • This paper describes numerical analysis of the impulse turbine with fixed guide vanes, a high performance hi-directional air turbine having simple structure for wane energy conversion. A 3-dimensional incompressible viscous flow numerical analysis based on the full Reynolds-averaged Wavier-Stokes equations was made to investigate the internal flow behavior Numerical results ate compared with experimental data. As a result, a suitable choice for the one of design factors has been clarified.