• Title/Summary/Keyword: Air-Water Interface

Search Result 282, Processing Time 0.033 seconds

Decrease of PEMFC Performance by Ion Contamination (이온 오염에 의한 고분자전해질 연료전지의 성능저하)

  • Song, Jinhoon;Woo, Myungwu;Kim, Saehoon;Ahn, Byungki;Lim, Taewon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.187-190
    • /
    • 2012
  • Contamination of ion from cathode air on the membrane and electrode assembly (MEA) is the serious degradation source in proton exchange membrane fuel cells (PEMFC). In this study, concentration of ions in air at industry region, street and seaside were measured. There were comparably high concentration of $Na^+$, $K^+$, $Ca^{2+}$ and $Fe^{3+}$ in this regions. This paper shows the effects of MEA contamination by these ions generated from humidification water. After 170 hours of fuel cell operation using city water as humidification water, the performance of unit cell decrease to 11% of initial performance. The electrolyte membrane easily absorbed foreign contaminant cations due to the stronger affinity of foreign cations with the sulfonic acid group compared to $H^+$. The contaminant ions existing in the interface between the platinum catalyst and ionomer layer turn out to be the most serious factor to decrease cell performance.

The development of the discharge reactor for water purification and a spectroscopic study on its discharge emission (수처리용 방전 리액터의 개발과 방전 발광의 분광학적 분석 연구)

  • Han, Sang-Bo;Park, Jae-Youn;Kim, Jong-Seog;Jung, Jang-Gun;Koh, Hee-Seog;Park, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.581-582
    • /
    • 2005
  • In order to apply the discharge plasma processing. to industrial areas, the control of the chemical reaction mechanism is necessary. The hybrid plasma reactor was designed for the effective treatment of wastewater and hazardous volatile organic substances. This plasma reactor was similar to the barrier discharge, and surface discharge on the dielectric surface was propagated to the water surface strongly for the heterogeneous chemical reaction at the interface between the working gas and the water surface. The discharge emission in this discharge reactor was mainly $N_2$ second positive band in the case of $N_2$ or air gas atmosphere, and intensities from OH radicals in Ar gas atmosphere were stronger than in $N_2$ or air gas atmosphere. From this result, it is necessary to apply Ar gas for the effective generation of OH radicals in this plasma reactor.

  • PDF

Adhesion and Lifetime Extension Properties of Electrical Conductive Paint Stored under of Nitrogen Atmosphere (질소환경에서 보관된 전기전도성 페인트의 접착 및 수명연장 특성)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.9-14
    • /
    • 2019
  • The change of three different reagents for electrical conductive paint using aircraft coating with elapsing time of exposure to different condition was investigated. Three different reagents were poured into the vial bottles, stored in air condition and room temperature and observed with elapsing days. In addition, adhesion property of paint was tried using cross cut tape test after storage of $N_2$ atmosphere. The weight of each different reagent was measured along with elapsing time. To confirm the change of chemical component with exposure of air atmosphere, FT-IR was performed. The weight of part A and Part B decreased slightly whereas the weight of part C decreased rapidly and the precipitation was remained. The part B was cured after exposure of $N_2$ atmosphere and the 2250 cm-1 from FT-IR peak decreased slowly at the same time. It was considered that the water contained in air accelerated the reaction of -NCO functional groups and it caused the curing whereas $N_2$ atmosphere not contained water and it resulted in the retardancy of curing.

The Effects of the Dehumidifying Membrane Dryer for the Curing Processes of Waterborne Adhesives (수용성 접착제 경화 공정용 제습 막 건조기 시스템의 효과)

  • Yu, Seoyoon;Lim, Choong-Sun;Seo, Bongkuk
    • Journal of Adhesion and Interface
    • /
    • v.17 no.2
    • /
    • pp.62-66
    • /
    • 2016
  • The curing processes of waterborne adhesives are in general undergone by using hot-air dryer. The hot-air dryer curing the adhesives with heat has a disadvantage of requiring high temperature over $100^{\circ}C$ as well as curing time as long as 20 min. When it comes to the heat control, high temperature open disturbs the adhesion of substrates by extremely lowering the viscosity of the adhesives. Furthermore, the humidity resulting from the drying process makes the curing condition irregularly. In this report, dehumidifying membrane dryer was used in order to keep the curing process same by removing humidity caused by the evaporation of water during the drying process, and to shorten the curing time. Here, we compared the peel strength of attached substrates in the dehumidifying membrane dryer to find out appropriate curing condition and confirm the effects of the dehumidifying membrane.

Influence of LNAPL and Soil Water on Migration of Gaseous Ozone in Unsaturated Soils (불포화 토양내에서 가스상 오존 이동특성에 대한 LNAPL과 토양수분의 영향)

  • Jung, Hae-Ryong;Choi, Hee-Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.63-67
    • /
    • 2005
  • Laboratory scale experiments were carried out to delineate the effects of liquid phases, such as soil water and light nonaqeous phase liquid (LNAPL) on the transport of gaseous ozone in unsaturated soil. Soil water enhanced the transport of ozone due to water film effect, which prevents direct reaction between soil particles and gaseous ozone, and increased water content reduced the breakthrough time of ozone because of increased average linear velocity and decreased air-water interface area. Diesel fuel as LNAPL also played a similar role with water film, so the breakthrough time of ozone in diesel-contaminated soil was significantly reduced compared with uncontaminated soil. Ozone breakthrough time was retarded with increased diesel concentration, however, because of high reactivity of diesel fuel with ozone. In unsaturated soil containing two liquids of soil water and LNAPL, the transport of ozone was mainly influenced by nonwetting fluid, diesel fuel in this study.

An Experimental Study of Water Vapor Pressure Change by Ambient Temperature at the Interface between Concrete and Fluid-Applied Membrane Layer

  • Ko, Jin-Soo;Kim, Byung-Yun;Park, Sung-Woo;Lee, Mun-Hwan;Lee, Sung-Bok
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • Over about 30% of problems in construction is related to water-leaking, and the loss from this problem can incur as much as three times the cost of initial construction. Thus, water vapor pressure is known to be the primary cause of defective waterproofing. Accordingly, the theories on the relationship between water pressure and temperature as well as damp-proofing volume of concrete and the change in vapor pressure volume were reviewed and analyzed in this study by making test samples after spraying a dampness remover and applying waterproofing materials to the prepared test specimens. The result of measuring water vapor pressure with the surface temperature of the waterproofing (fluid-applied membrane) layer at the experimental temperature setting of about $10^{\circ}C$, which is the annual average temperature of Seoul, indicated that (1) the temperature of the fluid-applied membrane elevated to about $40^{\circ}C$, and the water vapor pressure generated from the fluid-applied membrane was about 0.03 N/mm 2 when the surface temperature of the waterproofing layer was raised to about $80^{\circ}C$. (2) when the temperature of the fluid-applied membrane of the waterproofing layer was raised from $30^{\circ}C$ to $35^{\circ}C$, water vapor pressure of about 0.01 N/mm 2 was generated, and (3) when a thermal source was applied to the fluid-applied membrane (waterproofing) layer, the temperature increased from $35^{\circ}C$ to $40^{\circ}C$, and approximately $0.005\;N/mm^2$ of water vapor pressure was generated.

Case Study of Intermittent Poor Acceleration Fault Diagnosis by Brake Switch Fault (브레이크 스위치 결함에 의한 간헐적인 가속불량 현상의 고장진단 사례연구)

  • Kim, Sung Mo;Jo, Haeng Deug
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.203-210
    • /
    • 2015
  • This paper investigates the failure of a car with a 2.5-liter CRDi engine of the Hyundai Company. The failure is caused by intermittent poor acceleration while driving. To analyze the cause, we investigated the air intake volume, the fuel injection, and the air-fuel ratio, which were determined to be normal. The brake switch signal error was discovered while analyzing the function that limits the output of the engine. While investigating the cause, we discovered the corrosion of the pins on the connector of the brake switch. We determined that it was generated by soapy water flowing in the solar film. Therefore, the cause of the failure was the brake switch signal errors. Additionally, we determined that ECM was the normal fail-safe mode that implemented the override device for safety during normal acceleration. Based on these results, further solar film experiments must be conducted to fully elucidate the causes.

Effect of Process Conditions on the Microstructure of Particle-Stabilized Al2O3 Foam

  • Ahmad, Rizwan;Ha, Jang-Hoon;Hahn, Yoo-Dong;Song, In-Hyuck
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.278-284
    • /
    • 2012
  • $Al_2O_3$ foam is an important engineering material because of its exceptional high-temperature stability, low thermal conductivity, good wear resistance, and stability in hostile chemical environment. In this work, $Al_2O_3$ foams were designed to control the microstructure, porosity, and cell size by varying different parameters such as the amount of amphiphile, solid loading, and stirring speed. Particle stabilized direct foaming technique was used and the $Al_2O_3$ particles were partially hydrophobized upon the adsorption of valeric acid on particles surface. The foam stability was drastically improved when these particles were irreversibly adsorbed at the air/water interface. However, there is still considerable ambiguity with regard to the effect of process parameters on the microstructure of particle-stabilized foam. In this study, the $Al_2O_3$ foam with open and closed-cell structure, cell size ranging from $20{\mu}m$ to $300{\mu}m$ having single strut wall and porosity from 75% to 93% were successfully fabricated by sintering at $1600^{\circ}C$ for 2 h in air.

Development of High Performance LonWorks Based Control Modules for Network-based Induction Motor Control

  • Kim, Jung-Gon;Hong, Won?Pyo;Yun, Byeong-Ju;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.414-420
    • /
    • 2005
  • The ShortStack Micro Server enables any product that contains a microcontroller or microprocessor to quickly and inexpensively become a networked, Internet-accessible device. The ShortStack Micro Server provides a simple way to add LonWorks networking to new or existing smart devices. . It implements the LonTalk protocol and provides the physical interface with the LonWorks communication. The ShortStack host processor can be an 8, 16, or 32-bit microprocessor or microcontrollers. The ShortStack API and driver typically require about 4kbytes of program memory on the host processor and less than 200 bytes of RAM. The interface between host processor and the ShortStack Micro Server may be a Serial Communication Interface (SCI). The LonWorks control module with a high performance is developed, which is composed of the 8 bit PIC Microprocessor for host processor and the smart neuron chip for the ShortStack Micro Server. This intelligent control board is verified as proceeding the various function tests from experimental system with an boost pump and inverter driving systems. It is also confirmed that the developed control module provides stably 0-10VDC linear signal to the input signal of inverter driving system for varying the induction motor speed. Thus, the experimental results show that the fabricating intelligent board carried out very well the various functions in the wide operating ranges of boost pump system. This developed control module expect to apply to industrial fields to require the comparatively exact control and monitoring such as multi-motor driving system with inverter, variable air volume system and the boost pump water supply systems.

  • PDF

Comparative analysis of turbulence models in hydraulic jumps

  • Lobosco, Raquel J.;da Fonseca, David O.;Jannuzzia, Graziella M.F.;Costa, Necesio G.
    • Coupled systems mechanics
    • /
    • v.8 no.4
    • /
    • pp.339-350
    • /
    • 2019
  • A numerical simulation of the incompressible multiphase hydraulic jump flow was performed to compare the interface prediction through the use of the three RANS turbulence models: $k-{\varepsilon}$, $RNGk-{\varepsilon}$ and SST $k-{\omega}$. A three dimensional no submerged hydraulic jump and a two dimensional submerged hydraulic jump were modeled. Both the geometry and the mesh were created using the open source Gmsh code. The project's geometry consists of a rectangular channel with length and height differences between the two dimensional and three dimensional simulations. Uniform hexahedral cells were used for the mesh. Three refining meshes were constructed to allow to verify simulation convergence. The Volume of Fluid (abbr. VOF) method was used for treatment of the air-water surface. The turbulence models were evaluated in three distinct set up configurations to provide a greater accuracy in the flow representation. In the two-dimensional analysis of a submerged hydraulic jump simulation, the turbulence model RNG RNG $k-{\varepsilon}$ provided a better interface adjust with the experimental results than the model $k-{\varepsilon}$ and SST $k-{\omega}$. In the three-dimensional simulation of a no-submerged hydraulic jump the k-# showed better results than the SST $k-{\omega}$ and RNG $k-{\varepsilon}$ capturing the height and length of the ledge with a better fit with the experimental results.