• Title/Summary/Keyword: Air-Gap Control

Search Result 236, Processing Time 0.027 seconds

전자기베어링에서 Filtered-x LMS 알고리즘을 이용한 외란보상 제어기 설계 (Disturbance Compensation Control in Active Magnetic Bearing Systems by Filtered-x LMS Algorithm)

  • 강민식;강윤식;이대옥
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.447-450
    • /
    • 2003
  • This paper concerns on application of active magnetic bearing(AMB) system to levitate the elevation axis of an electro-optical sight mounted on moving vehicles. In such a system. it is desirable to retain the elevation axis within the predetermined air-gap while the vehicle is moving. A disturbance compensation control is proposed to reduce the base motion response. In the consideration of the uncertainty of the system model, a filtered-x least-mean-square(FXLMS) algorithm is used to estimate adaptively the frequency response function of the feedforward control which cancels disturbance responses. The frequency response function is fitted to an optimal feedforward control. Experimental results demonstrate that the proposed control reduces the air-gap deviation to 27.7% that by feedback control alone.

  • PDF

베이스 가진을 받는 능동자기베어링 시스템에서 Filtered-x LMS 알고리듬을 이용한 가속도 앞먹임 제어 (Acceleration Feedforward Control in Active Magnetic Bearing System Subject to Base Motion by Filtered-x LMS Algorithm)

  • 강민식
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1712-1719
    • /
    • 2003
  • This paper concerns on application of active magnetic bearing(AMB) system to levitate the elevation axis of an electro-optical sight mounted on moving vehicles. In such a system, it is desirable to retain the elevation axis within the predetermined air-gap while the vehicle is moving. An optimal base acceleration feedforward control is proposed to reduce the base motion response. In the consideration of the uncertainty of the system model, a filtered-x least-mean-square(FXLMS) algorithm is used to estimate the frequency response function of the feedforward control which cancels base motions. The frequency response function is fitted to an optimal feedforward control. Experimental results demonstrate that the proposed control reduces the air-gap deviation to 27.7% that by feedback control alone.

부분 차폐된 동전기 휠의 개방 영역 크기 조절을 통한 전도성 평판의 제어 (Control of Conductive Plate Through Varying the Open Area Size of the Partially, Magnetically Isolated Electrodyamic Wheel)

  • 정광석
    • 제어로봇시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.230-236
    • /
    • 2012
  • Shielding the air-gap magnetic field of the electrodynamic wheel below a conductive plate and opening the shielding plate partially, a thrust force and a normal force generate on the conductive plate at the open area. But, as only the variable controlling both forces is a rotating speed of the electrodynamic wheel, it is very difficult to control the forces independently by the speed. So, we discuss a novel method controlling the forces effectively through manipulating a size of the open area. The independent control is made possible by virtue of the feature that the relative ratio between both forces is irrelevant to an air-gap length and determined uniquely for a specific rotating speed of the wheel. Therefore, the rotating speed and the size of open area become new control variables. The feasibility of the method is verified experimentally. Specially, the controllable magnetic forces are used in a noncontact conveyance of the conductive plate.

자기베어링 구동용 전자석의 흡인력에 대한 수학적 모델링 (Mathematical Modeling about Magnetic Attractive Force of Magnetic Bearing)

  • 최교호;양주호;정광교
    • 동력기계공학회지
    • /
    • 제16권3호
    • /
    • pp.64-68
    • /
    • 2012
  • Because the magnetic bearing supports levitating body without contact, wear, noise and vibration are very small comparing with mechanical bearings, it is very useful to high revolution machinery. In general, the magnetic attractive force function that is proportional to square of control current(x), and inversely proportional to square of an air gap(i) has been widely used. This paper proposed the new magnetic attractive force function that is proportional to cube of the control current, and inversely proportional to square of the air gap. The function was optimized to minimize the cost function that is the percentage of deviation about the change of a proportional constant(k), using the experimental data, ie, control currents and air gaps.

AIN 체적탄성파 소자의 주파수 응답특성에 대한 전극재료의 영향 (Effect of electrode material under frequency response characteristics of AIN based FBAR devices)

  • 김보현;;박진석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.1865-1867
    • /
    • 2005
  • Film bulk acoustic resonator (FBAR) devices which adopt an air-gap type (metai/AlN/metal/air/substrate) configuration are fabricated by a novel process. The newly fabricated resonator doesn't employ any supporting layer below it. FBAR devices with the air-gap type are also fabricated using the conventional method. The frequency response characteristics of all the devices fabricated are measured and compared, in terms of the kinds of top and bottom electrode materials. The results show that the better device performance of FBAR devices can be achieved by employing the proposed process.

  • PDF

Design and Analysis of Lorentz Force-type Magnetic Bearing Based on High Precision and Low Power Consumption

  • Xu, Guofeng;Cai, Yuanwen;Ren, Yuan;Xin, Chaojun;Fan, Yahong;Hu, Dengliang
    • Journal of Magnetics
    • /
    • 제22권2호
    • /
    • pp.203-213
    • /
    • 2017
  • Magnetically suspended control & sensitive gyroscope (MSCSG) is a novel type of gyroscope with the integration of attitude control and attitude angular measurement. To improve the precision and reduce the power consumption of Lorentz Force-type Magnetic Bearing (LFMB), the air gap flux density distribution of LFMB has been studied. The uniformity of air gap flux density is defined to qualify the uniform degree of the air gap flux density distribution. Considering the consumption, the average value of flux density is defined as well. Some optimal designs and analyses of LFMB are carried out by finite element simulation. The strength of the permanent magnet is taken into consideration during the machining process. To verify the design and simulation, a high-precision instrument is employed to measure the 3-dimensional magnetic flux density of LFMB. After measurement and calculation, the uniform degree of magnetic flux density distribution reaches 0.978 and the average value of the flux density is 0.482T. Experimental results show that the optimal design is effective and some useful advice can be obtained for further research.

Novel DC Grid Connection Topology and Control Strategy for DFIG-based Wind Power Generation System

  • Yi, Xilu;Nian, Heng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권4호
    • /
    • pp.466-472
    • /
    • 2013
  • The paper presents a novel DC grid connection topology and control strategy for doubly-fed induction generator (DFIG) based wind power generation system. In order to achieve the wind power conversion, the stator side converter and the rotor side converter is used to implement the DFIG control based on the indirect air-gap flux orientation, and a DC/DC converter is used for the DFIG system to DC grid connection. The maximum power point tracking and DC voltage droop control can also be implemented for the proposed DFIG system. Finally, a 4-terminal DFIG-based multi-terminal DC grid system is developed by Matlab to validate the availability of the proposed system and control strategy.

가변압축기용 제어 밸브의 전자력 향상 설계 (Design for Improving Magnetic Force of Control Valve in Variable Compressor)

  • 이용주;이건호
    • 유공압시스템학회논문집
    • /
    • 제7권4호
    • /
    • pp.44-49
    • /
    • 2010
  • This paper represents solenoid design of control valve for incline angle control in variable compressor. Some theoretical and numerical analysis were performed to analyse solenoid and compared with experimental results. Maxwell program was used for numerical analysis. Through redesigns of housing body, plunger, core, and disk in control valve, the needed force was gotten. Reduction of core groove and housing body air-gap had a large influence on magnetic force. But increasing of disk thickness had little effect on magnetic force. Control valve efficiency could be improved through solenoid redesign.

  • PDF

공기베어링의 능동제어에 관한 연구 (A Study on the Active Control of Air Bearing)

  • 이정배;김경웅
    • 대한기계학회논문집A
    • /
    • 제20권8호
    • /
    • pp.2501-2507
    • /
    • 1996
  • In this paper actively controlled air bearing is investigated to overcome the defects of air bearing such as low stiffness and damping coefficients. The actively controlled air beairng is composed of an air bearing, a gap sensor, a controller, and a piezo actuator. By controlling the position of air bearing with piezo actuator, the position of floating object is controlled. In this study the proportional-Integral-Derivative controller is employed. Active air bearing is investigated numerically and experimentally. There is good agreement between the simulation and the experimental results. It is shown that the stiffness and damping characteristics and positioning experimental results. It is shown that the stiffness and damping characteristics and positioning accuracy of air bearing can be improved by means of adopting actively controlled air bearing.

SIL을 이용한 근접장 기록계에서의 서보 방식의 개발 (Improvement Air Gap Control for SIL based Near-Field Recording System)

  • 김중곤;김태훈;정준;박노철;양현석;박영필
    • 정보저장시스템학회논문집
    • /
    • 제3권1호
    • /
    • pp.1-4
    • /
    • 2007
  • A high density optical data storage device has been required for many years. In the field of the optical data storage, a near-field recording (NFR) technology is considered as a next generation one for achieving the high data density. Due to an evanescent wave effect occurred under 100nm distance which is the excessively small distance between the SIL and the disc, the most significant and difficult problem in this technology is to maintain a gap between a solid immersion lens (SIL) and a disc. Also, maintaining the gap under at least 50nm is required in the NFR gap servo system to use the evanescent wave effect efficiently. There are some institutes that have shown the novel gap servo control. In general, they use a mode switching servo method which consists of approach, hand-over and gap control mode. However there is a critical problem such as an overshoot at the tuning point from the approach mode to the hand-over mode, which may cause a collision between the SIL and the disc. In this paper, we show our NFR system and an improved gap servo system using an exponential function as the approach mode which can reduce the overshoot.

  • PDF