• 제목/요약/키워드: Air-Gap Control

검색결과 236건 처리시간 0.022초

공압서보시스템에 의한 미세 간극제어 시스템 설계 (Fine Gap Control Using Pneumatic Servo System)

  • 김동환;김영진;정대화
    • 한국정밀공학회지
    • /
    • 제19권12호
    • /
    • pp.45-56
    • /
    • 2002
  • A pneumatic servo system requiring a fine gap control in a photo-electric sensor which is used for a LCD array detection device is introduced. The gap controlled by the pneumatic servo system remains within around 50~80 ${\mu}{\textrm}{m}$, and the system possesses an effect to eliminate undesirable particles on the LCD plate by blowing air out. The air flow rate is initially controlled by a servo valve and expanded by a booster valve, thus the controlled air pressure contributes to maintaining an appropriate gap between the LCD plate and photo-electric sensor An air floating plate of two degrees of freedom is designed and fabricated, and a fine tilting motion control is also implemented by assigning different gap commands. The pressure control and direct gap control are proposed, and each performance is verified experimentally.

횡자속 영구자석형 자기부상전자석 시스템의 공극제어에 관한 연구 (A Study on Air-gap Control for Transverse Flux Permanent Magnet Type Magnetic Levitation Electromagnet System)

  • 이재원;김명재;황선환
    • 한국산업융합학회 논문집
    • /
    • 제26권6_2호
    • /
    • pp.1127-1134
    • /
    • 2023
  • In this paper, we proposes a study on air gap control for magnetic levitation of transverse flux permanent magnet electromagnets. In general, mechanical systems have a high failure rate of bearings. Bearings in particular are problematic because they have high surface wear rate and degradations. To solve this problem, replacing the bearing with a magnetic levitation electromagnet system can provide lightweight and efficiency improvements. However, precise air gap control is essential to control the magnetic levitation electromagnet system. Therefore, in this paper, we identify the instable cause of gap control through a mathematical modeling and verify through experiment a control algorithm that can use compensation.

독립 3상 구조를 갖는 이중공극형 영구자석 동기전동기의 Y 및 Delta 결선에 따른 공극제어 (Air-gap Control According to Y and Delta Connections of Double-sided Air-gap Permanent Magnet Synchronous Motor with Independent Three-phase Structure)

  • 허찬녕;황선환
    • 전력전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.249-255
    • /
    • 2017
  • This paper presents air-gap control according to Y and Delta connections of a double-sided air-gap permanent magnet synchronous motor (DA-PMSM) with independent three-phase structure. In particular, the DA-PMSM used in this study can be applied to low-speed and high-torque applications, such as wind turbines, tidal power generations, and electric propulsion ships, because of its modular stators and a rotor with numerous permanent magnets. Unlike conventional three-phase machines, the DA-PMSM has a symmetrical configuration with double-sided air-gap. Therefore, Y/Delta winding connections and serial/parallel configurations between stator modules are possible. To identify the DA-PMSM operating characteristics, mathematical modeling is analyzed according to the Y/Delta connections. Moreover, air-gap control performances by applying the winding connection methods are verified through experimental results.

Wide Air-gap Control for Multi-module Permanent Magnet Linear Synchronous Motors without Magnetic Levitation Windings

  • Bang, Deok-Je;Hwang, Seon-Hwan
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1773-1780
    • /
    • 2016
  • This paper proposes a wide air-gap control method for the multi-module permanent magnet linear synchronous motor (MM-PMLSM) based on independent vector control. In particular, the MM-PMLSM consists of symmetrical multi-module and multi-phase structures, which are basically three-phase configurations without a neutral point, unlike conventional three-phase machines. In addition, there are no additional magnetic levitation windings to control the normal force of the air-gap between each stator and mover. Hence, in this paper, a dq-axis current control applying a d-q transformation and an independent vector control are proposed for the air-gap control between the two symmetric stators and mover of the MM-PMLSM. The characteristics and control performance of the MM-PMLSM are analyzed under the concept of vector control. As a result, the proposed method is easily implemented without additional windings to control the air-gap and the mover position. The effectiveness of the proposed independent vector control algorithm is verified through experimental results.

Effect of Bogie Frame Flexibility on Air Gap in the Maglev Vehicle with a Feedback Control System

  • Kim, Ki-Jung;Han, Hyung-Suk;Kim, Chang-Hyun;Yang, Seok-Jo
    • International Journal of Railway
    • /
    • 제4권4호
    • /
    • pp.97-102
    • /
    • 2011
  • In an EMS (Electromagnetic suspension)-type Maglev (Magnetically-levitated) vehicle, the flexibility of the bogie frame may affect the acceleration of the electromagnet that is input into the control system, which could lead to instability in some cases. For this reason, it is desirable to consider bogie frame flexibility in air gap simulations, for the optimization of bogie structure. The objective of this paper is to develop a flexible multibody dynamic model of 1/2 of an EMS-type Maglev vehicle that is under testing, and to compare the air gap responses obtained from the rigid and the flexible body model. The feedback control system and electromagnet models that are unique to the EMS-type maglev vehicle must be included in the model. With this model, dynamics simulations are carried out to predict the air gap responses from the two models, of the rigid and flexible model, and the air gaps are compared. Such a comparative study could be useful in the prediction of the air gap in the design stage, and in designing an air gap control system.

  • PDF

철도차량용 선형유도전동기 성능시험기의 공극조절 시스템 특성 연구 (Characteristic Analysis of Air-gap Control System in Performance Test Machine of a LIM for Railway Transit)

  • 박찬배;이형우;이병송;박현준;권삼영;한경희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1955-1961
    • /
    • 2008
  • A lot of researches on a linear induction motor(LIM) have been advanced to realize a traction system with high efficiency and performance for railway transit for a long time. However, most of them are limited in design of a LIM part such as Primary and Secondary. At a LIM which is traveling, the change of an air-gap(It occurs by a construction tolerance of a secondary reaction plate) becomes the cause which decreases a smoother ride and the efficiency of railway transit system. Therefore, uniform air-gap operation of LIM is important issue to improve the system efficiency. However, the researches which control the air-gap length of the LIM with technical and high-cost problem have been not advanced a lot. Therefore, in this research, it is introduced an air-gap control system for performance test machine of a scale-downed LIM which is able to control the air-gap length of the LIM and monitor a variety of performance changes of the propulsion system, and conducted a research on feasibility of the system based on characteristic analysis.

  • PDF

The Design of the Feedback Control System of Electromagnetic Suspension Using Kalman Filter

  • Jo, Jeong-Min;Han, Young-Jae;Lee, Chang-Young
    • International Journal of Railway
    • /
    • 제4권4호
    • /
    • pp.93-96
    • /
    • 2011
  • The basic element of the EMS suspension is the electromagnet system, which suspends the vehicle without contact by attracting forces to the rails at the guideway. The suspension of a vehicle by attractive magnetic forces is inherently unstable and consequently it is continuously adjusted by the strength of the suspending electromagnet from rail irregularity and bending of the guideway. In order to improve reliable tracking, it needs to get feedback signals without measurement delay time. In this paper the concept of feedback control system with Kalman Filter in EMS is proposed. The input signals in the feedback control system are an air-gap and an acceleration signal. The air-gap signal with noise from the gap sensor is transformed to the filtered air-gap signal y without measurement delay time by using Kalman Filter. The filtered air-gap signal is transformed to a relative velocity and a relative acceleration signal. Then it multiplies these values by gain matrix in order to get the actuator's reference voltage value. The simulation results show that the dynamic responses of the suspension system can be improved by reducing the influence of measurement delay time of air-gap signals.

  • PDF

외란이 충격 신호일 때 공극 추정을 위한 직구동 모터의 관측 가능한 수학적 모델 수립 (Design Observable Model of Direct Drive Motor for Air Gap Estimation when Input Disturbance is Impulse signal)

  • 기태석;박윤식;박영진
    • 제어로봇시스템학회논문지
    • /
    • 제18권7호
    • /
    • pp.627-631
    • /
    • 2012
  • Observable mathematical model of DDM (Direct Dirve Motor) was suggested. The motor that operates the object system directly is called DDM. DDM has many strong points, however, it has a significant disadvantage, that it is more sensitive to the external force than the motor with reduction gear. In other word, if the force is applied, air gap of the motor can be perturbed. This causes not only difficulty in motor control but also even more serious problem, such as the breakdown of motor. However, if the air gap variation can be estimated, it can help prevent these problems. DDM should be modeled to estimate the air gap variation. The type of researched DDM is PMSM (Permanent Magnet Synchronous Motor) and precedent model of PMSM includes only characteristics of electro-magnetic system and rotational motion. However, suggested model should also include characteristics of translational motion of rotor to estimate the air gap variation. Also, this model should satisfy observability condition, because state observer is designed based on this model.

공기예열기를 위한 고온용 변위센서 및 센서드라이브 시스템 구현 (The Implementation of high temperature displacement sensors and sensors drive system for Air-preheater)

  • 조항덕;김우식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.453-458
    • /
    • 2011
  • Air preheater uses the waste heat of the gas which burnt from the boiler from the thermal power plant. Air preheater it is established in the exit of the boiler follows in change of temperature combustion gas and the vibration which it follows in thermal expansion and contraction occurs. Air preheater with ruse the gas the seal the place where it includes a gap in the structure which it does, the vibration which it follows in change of temperature fluctuates the displacement of gap, fluctuation of the leakage quantity which occurs from gap there is a possibility of decreasing an effect to system. Part system it will be able to control the interval of gap in order, control mechanism about under establishing the place where it does the gap control actively, measures a gap the displacement sensor for is necessary. Like this displacement sensor the condition must do continuous running from atmosphere of high temperature was demanded all. This paper investigates the implementation instance of hazard existing which implement the high temperature displacement sensor, it analyzes, produces the result which it examines a model, it was a presentation. These results with the fact that it will contribute in the research for the implementation and a localization of the high temperature displacement sensor and advanced air preheater.

  • PDF

Robust Design of Air Compressor-Driving Quadratic Linear Actuator in Fuel Cell BOP System using Taguchi Method

  • Kim, Jae-Hee;Kim, Jun-Hyung;Kim, Jin-Ho
    • Journal of Magnetics
    • /
    • 제17권4호
    • /
    • pp.275-279
    • /
    • 2012
  • The linear actuator has the inherent drawback of air gap variation because its linear motion is usually guided by the springs, which destabilizes the dynamic performance. In order to design the linear actuator to be insensitive to air gap, this paper describes the robust design of the air compressor driving linear actuator using Taguchi method. The orthogonal arrays are constructed with selected control factors and noise factor for minimum experiment. The control factors are thickness of inner magnet, height of upper yoke, thickness of outer magnet and thickness of lower yoke while noise factor is airgap. The finite element analysis using commercial electromagnetic analysis program "MAXWELL" are performed instead of experiment. ANOVA are performed to investigate the effects of design factors. In result, the optimal robust linear actuator which is insensitive to air gap variation is designed.