• 제목/요약/키워드: Air-Fuel Ratio

검색결과 804건 처리시간 0.044초

단계적 연소의 $NO_x$ 저감에 대한 연구 (A Study of $NO_x$ Reduction in Stage Combustion)

  • 채재우;전영남;이운영
    • 대한기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.1556-1571
    • /
    • 1993
  • 본 연구에서는 소규모 실험장치(6.6kW)를 이용하여 $NO_x$ 저감방법 중에 가장 효율적인 방법이라 알려진 공기 및 연료의 단계적 연소법 (air and fuel staged combustion)을 이용하여, Fuel-N을 함유하고 있는 연료의 $NO_x$ 의 배출특성을 규명함 은 물론 최적 저 $NO_x$ 연소기술 향상방안을 제시하고자 한다.

PEM 연료전지 자동차의 급기 시스템의 모델링 및 분석 (Modeling and Analysis of the Air Supply System for Vehicular PEM Fuel Cell)

  • 장현탁;강이석
    • 한국수소및신에너지학회논문집
    • /
    • 제14권3호
    • /
    • pp.236-246
    • /
    • 2003
  • This paper focuses on developing a model of a PEM fuel cell stack and to integrate it with realistic model of the air supply system for fuel cell vehicle application. The fuel cell system model is realistically and accurately simulated air supply operation and its effect on the system power and efficiency using simulation tool Matlab/Simulink. The Peak performance found at a pressure ratio of 3, and it give a 15mV increase per cell. The limit imposed is a minimum SR(Stoichiometric Ratio) of 2 at low fuel cell load and 2.5 at high fuel cell load.

공연비 변화가 MILD 연소 특성에 미치는 영향에 관한 해석적 연구 (A numerical study of the air fuel ratio effect on the combustion characteristics in a MILD combustor)

  • 하지수;김태권;심성훈
    • 대한환경공학회지
    • /
    • 제32권6호
    • /
    • pp.587-592
    • /
    • 2010
  • 연소과정 중에 발생하는 질소산화물을 저감하는 기술인 MILD 연소에 대하여 공연비를 변화시키면서 나타나는 연소 특성을 수치해석을 통하여 연구하였다. 작은 크기의 공기분출속도(10 m/s)에서는 공기가 연소로 내 상부영역까지 침투하지 못한다. 반면에 공기분출속도가 30 m/s인 경우에는 공기유동이 연료유동을 억제하고 상부영역까지 흘러간다. 이론공기량에 해당하는 공기분출속도 18 m/s에서는 10 m/s 보다 상대적으로 상부영역까지 침투하였다. 이러한 유동 양상으로 공기분출속도가 작은 10 m/s에서는 연소반응대가 공기노즐 측에 치우쳐 나타나고 30 m/s에서는 연료노즐 측에 형성되었다. 공기분출속도 16, 18, 20 m/s에서는 공기노즐과 연료노즐 중간 영역에서 연소반응대가 형성되었다. 연소로 내 최대온도와 NOx 생성은 공기분출속도가 10 m/s, 30 m/s인 경우 보다 이론공기량이거나 이에 가까운 16, 18, 20 m/s에서 낮게 나타났다. 본 연구로부터 MILD 연소로에서 이론공기량 조건이 NOx를 저감하는 최적의 조건이라는 것을 밝혔다.

신경회로망을 이용한 연료 분사식 자동차 엔진의 공연비 제어 (An air-fuel ratio control for fuel-injected automotive engines by neural network)

  • 최종호;원영준;고상근;노승탁
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1006-1011
    • /
    • 1991
  • In this paper, a neural network estimator which estimates the output of the wide range oxygen sensor is proposed, The neural network estimator is constructed to give the output of the wide range oxygen sensor from rpm, fuel injection time, throttle position, and output voltage of the exhaust gas oxygen sensor. And, using this estimator, PI controller for air-fuel ratio control is designed. Experiment results show that the proposed method gives good results for SONATA engine under light load and constant rpms.

  • PDF

The Characteristics of Pulverized Coal Combustion in the Two Stage Cyclone Combustor

  • Joo, Nahm-Roh;Kim, Ho-Young;Chung, Jin-Taek;Park, Sang-Il
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1112-1120
    • /
    • 2002
  • Numerical investigations on air staging and fuel staging were carried out with a newly designed coaxial cyclone combustor, which uses the method of two stage coal combustion composed of pre-combustor and main combustor. The pre-combustor with a high air/fuel ratio is designed to supply gas at high temperature to the main combustor. To avoid local high temperature region in this process, secondary air is injected in the downstream. Together with the burned gas supplied from the pre-combustor and the preheated air directly injected into main combustor, coals supplied through the main burner react rapidly at a low air/fuel ratio. Strong swirling motion of cyclone combustor keeps the wall temperature high, which makes slagging combustion possible. Alaska, US coal is used for calculations. Predictions were made for various coal flow rates in the main combustor for fuel staging and for the various flow rate of secondary air in the pre-combustor for air staging. In-scattering angles are also chosen as a variable to increase residence times of coal particles. Temperature fields and particle trajectories for various conditions are described. Predicted temperature variations at the wall of the combustor are compared with corresponding experimental data and show a similar trend. The in-scattering angle of 20° is recommended to increase the combustion efficiency in the main chamber.

ANALYSIS OF IN-CYLINDER FUEL-AIR MIXTURE DISTRIBUTION IN A HEAVY DUTY CNG ENGINE

  • Lee, Seok-Y.;Huh, Kang-Y.;Kim, Y.M.;Lee, J.H.
    • International Journal of Automotive Technology
    • /
    • 제2권3호
    • /
    • pp.93-101
    • /
    • 2001
  • Distribution of fuel-air mixture has a strong influence on performance and emissions of a compressed natural gas (CNG) engine. In this paper, parametric study is performed by KIVA-3V to investigate fuel-air mixture with respect to injection timing, cycle equivalence ratio and engine speed. With open-valve injection intensive mixing during intake and compression stroke results in relatively homogeneous mixture in the cylinder. Sequential induction of fuel-air mixture and fresh air results in stratification in the cylinder among the test cases at closed-valve injection. There is close similarity in the calculated distributions of the mixture in the cylinder with different cycle equivalence ratios and engine speeds. The results are compared against pressure traces and flame images obtained in a single cylinder engine converted from a 11L six-cylinder heavy duty diesel engine.

  • PDF

다단 연소기를 이용한 LNG 화염의 NOx 발생에 관한 실험적 연구 (An Experimental Study on the NOx Formation of LNG Flame in Fuel Staged Combustor)

  • 정진도;한지웅;안국영
    • 대한기계학회논문집B
    • /
    • 제28권4호
    • /
    • pp.389-394
    • /
    • 2004
  • An experimental study on the NOx formation of LNG flame in fuel staged combustor has been studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is a act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel bums. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Natural Gas(LNG) was used as a primary and secondary fuels. This study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, and primary/secondary air ratio for reducing NOx emission with two types of nozzle. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

다단 연소기를 이용한 LNG 화염의 NOx 발생에 관한 실험적 연구 (An Experimental study on the NOx Formation of LNG Flame in Fuel Staged Combustor)

  • 한지웅;안국영;김한석;정진도;박경진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.161-166
    • /
    • 2001
  • An Experimental study on the NOx formation of LNG flame in fuel staged combustor has been studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel burns. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Natural Gas(LNG) was used as primary and secondary fuels. The study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, and primary/secondary air ratio for reducing NOx emission with two types of nozzle. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

  • PDF

전자제어식 연료분사장치의 구조와 작동 (Structure & operation of electronic fuel injection)

  • 목희수
    • 오토저널
    • /
    • 제8권4호
    • /
    • pp.13-23
    • /
    • 1986
  • The power of an international combustion engine depends on its ability to inhale air whether it is naturally aspirated or turbocharged. The use of fuel injection allows engine efficiency to be increased through a more even distribution of the air/fuel ratio throughout the engine's operation range. The theoretical value for complete combustion in an engine is commonly refered to as stoichiometric, which means that we require 14.7 parts of air to 1 part of gasoline. This stoichiometric ratio can be more closely maintained with electronically controlled fuel injection than it can with carburetion. Because of the greater efficiency of the engine using fuel injection, a horse power increase of at least 10% is produced over its carburetor version. In addition, better fuel economy and less exhaust emissions are also obtained.

  • PDF

STR을 이용한 가솔린 엔진의 공연비 제어 성능 향상에 관한 연구 (A Study on the Improvement of Air-Fuel Ratio Control Performance in Sl Engine Using STR)

  • 신규철;박승범;윤팔주;정남훈;선우명호
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.57-64
    • /
    • 2001
  • This study presents an self tuning regulator(STR) to improve the air-fuel ratio control of performance of gasoline engine. The STR is designed based on the nonlinear dynamic engine model, and the performance of the STR is evaluated through the simulation and experiments. The STR shows better performance than a conventional PI controller in terms of the response time and disturbance rejection. Since the STR has less calculation load than the complex nonlinear controller, this algorithm can be easily applied to on-board engine controller.

  • PDF