• Title/Summary/Keyword: Air-Flow

Search Result 7,009, Processing Time 0.042 seconds

Study for Failure Examples Involved to Spark Plug Assembling Part Damage, Timing Maladjustment and Alien Substance Insertion in Intake Valve Part on LPG Vehicle Engine (자동차용 LPG 엔진의 점화플러그 장착 부 손상, 점화시기 조정불량, 흡입밸브 부 이물질유입 고장사례 연구)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Kim, Sung Mo;Hwang, Han Sub;Jung, Dong Hwa;Moon, Hak Hoon;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.22-27
    • /
    • 2021
  • This paper is a purpose to study the failure examples for LPG vehicle. The first example, the researcher certified the incongruity phenomenon decreased engine power by ignition fire leakage because of spark plug threaded part damage assembling in cylinder head. The second example, the timing mark that accurately adjusting the camshaft and crankshaft position were twisted about 0.5 block each other. Finally, the researcher seeked the disharmony phenomenon as it couldn't set ignition timing. The third example, the researcher knew the failure phenomenon by interrupted the closing period for intake valve moving with air flow in the number 3 port of cylinder head as the foreign substance in cylinder head didn't remove. Therefore, the manager of a car has to thorough going inspect and the manufacture of a car must remove the cause of failure with quality assurance.

Development of Panel-Based Rapid Aerodynamic Analysis Method Considering Propeller Effect (프로펠러 효과를 반영 가능한 패널 기반 신속 공력 해석 기법 개발)

  • Tai, Myungsik;Lee, Yebin;Oh, Sejong;Shin, Jeongwoo;Lim, Joosup;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.107-120
    • /
    • 2021
  • Electric-powered distributed propulsion aircraft possess a complex wake flow and mutual interference with the airframe, due to the use of many propellers. Accordingly, in the early design stage, rapid aerodynamic and load analysis considering the effect of propellers for various configurations and flight conditions are required. In this study, an efficient panel-based aerodynamic analysis method that can take into account the propeller effects is developed and validated. The induced velocity field in the region of propeller wake is calculated based on Actuator Disk Theory (ADT) and is considered as the boundary condition at the vehicle's surface in the three-dimensional steady source-doublet panel method. Analyses are carried out by selecting an isolated propeller of the Korea Aerospace Research Institute (KARI)'s Quad Tilt Propeller (QTP) aircraft and the propeller-wing configuration of the former experimental study as benchmark problems. Through comparisons with the results of computational fluid dynamics (CFD) based on actuator methods, the wake velocity of propeller and the changes in the aerodynamic load distribution of the wing due to the propeller operation are validated. The method is applied to the analysis of the Optional Piloted Personal Aerial Vehicle (OPPAV) and QTP, and the practicality and validity of the method are confirmed through comparison and analysis of the computational time and results with CFD.

Estimation of Pollution Sources of Oenam Watershed in Juam Lake using Nitrogen Concentration and Isotope Analysis (주암호 외남천 유역 하천수의 질소농도와 동위원소비 분석을 이용한 오염원 평가)

  • Choi, Yujin;Jung, Jaewoon;Choi, Woojung;Yoon, Kwangsik;Choi, Dongho;Lim, Sangsun;Jeong, Juhong;Lim, Byungjin;Chang, Namik
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.467-474
    • /
    • 2011
  • In an effort to investigate water pollution characteristics of Juam lake, water samples were collected from three sites (Sites A, B, and C) of Oenam stream which is a typical tributary of rural watershed in the lake and analyzed for N concentration and the corresponding isotope ratio (${\delta}^{15}N$) of ${NO_3}^-$. Concentrations of ${NO_3}^-$ were not dramatically different among the sites; $0.8{\pm}0.2mgNL^{-1}$ (range: $0.0{\sim}4.3mgNL^{-1}$) for Site A, $1.1{\pm}0.2mgNL^{-1}$ ($0.0{\sim}4.3mgNL^{-1}$) for Site B, and $1.1{\pm}0.1mgNL^{-1}$ ($0.1{\sim}2.6mgNL^{-1}$) for Site C. Meanwhile, ${\delta}^{15}N$ tended to decrease with river flow; it was highest for Site A ($45.5{\pm}5.3$‰) followed by Site B ($19.7{\pm}2.0$‰) and Site C ($8.7{\pm}1.5$‰). Such high ${\delta}^{15}N$ values of ${NO_3}^-$ in Site A suggested that ${NO_3}^-$ derived from livestock feedlot (specifically livestock excrete of which ${\delta}^{15}N$ is higher than 10‰) is the predominant pollution sources despite mountainous area occupied the most of land-use in the watershed. Using the two-sources isotope mixing model, it was estimated that the contribution of cropping activities (i.e. fertilization) became greater in down-stream area (Sites B and C) due to the higher agricultural land-use than the up-stream area (Site A). Particularly, during the active cropping season, the low contribution of organic pollution sources indicated that domestic sewage was not the predominant pollution source. Therefore, it was suggested that agricultural sources such as livestock farming and cropping rather than mountainous and residential are the dominant sources of water pollution in the study area. These results could be effectively utilized in elucidating water pollution sources in rural areas and selecting water management practices.

Fault Classification Model Based on Time Domain Feature Extraction of Vibration Data (진동 데이터의 시간영역 특징 추출에 기반한 고장 분류 모델)

  • Kim, Seung-il;Noh, Yoojeong;Kang, Young-jin;Park, Sunhwa;Ahn, Byungha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.25-33
    • /
    • 2021
  • With the development of machine learning techniques, various types of data such as vibration, temperature, and flow rate can be used to detect and diagnose abnormalities in machine conditions. In particular, in the field of the state monitoring of rotating machines, the fault diagnosis of machines using vibration data has long been carried out, and the methods are also very diverse. In this study, an experiment was conducted to collect vibration data from normal and abnormal compressors by installing accelerometers directly on rotary compressors used in household air conditioners. Data segmentation was performed to solve the data shortage problem, and the main features for the fault classification model were extracted through the chi-square test after statistical and physical features were extracted from the vibration data in the time domain. The support vector machine (SVM) model was developed to classify the normal or abnormal conditions of compressors and improve the classification accuracy through the hyperparameter optimization of the SVM.

Emission Rates of Biogenic Volatile Organic Compounds from Various Tree Species in Korea (II): Major Species in Urban Forests (국내 수종별 BVOCs 방출량(II): 도시 숲 주요 수종)

  • Hanna, Chang;Jounga, Son;Juwan, Kim;Junhyuk, Kim;Yeongseong, Kim;Won-Sil, Choi;Young-Kyu, Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.490-501
    • /
    • 2022
  • In this study, the isoprene and terpene emissions from 32 major urban tree species were investigated. We conducted sampling using a dynamic enclosure system between June and July 2021. Seedlings aged < three years were enclosed in a chamber consisting of a 400 L transparent Tedlar bag. The air flow from the outlet of the chamber was sampled using Tenax-filled sorbent tubes under standard conditions (temperature: 30°C; PAR: 1,000 μmol/m2/sec). A thermal desorption gas chromatography/mass spectrometry system was used to analyze the following 38 biogenic volatile organic compounds: isoprene, monoterpenes, sesquiterpenes, oxygenated monoterpenes, and oxygenated sesquiterpenes. Isoprene emitters included Quercus mongolica, Salix koreensis, Robinia pseudoacacia, and Salix chaenomeloides. Monoterpene emitters included Pinus strobus, Cedrela sinensis, and Cercis chinensis. The monoterpene emission profiles were dominated by á-pinene, myrcene, camphene, and limonene. The predominant oxygenated monoterpene and oxygenated sesquiterpene were eucalyptol and caryophyllene oxide, respectively. For all species, the contributions of sesquiterpenes and oxygenated sesquiterpenes were relatively low.

Ground Separation Test to Verify Separation Stability of External Fuel Tank (외부연료탱크의 분리 안정성 검증을 위한 지상 분리시험)

  • Kim, Hyun-gi;Hong, Seung-ho;Ha, Byung-geun;Kim, Sung-chan;Lee, Jun-won
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.99-104
    • /
    • 2022
  • Aircraft pylon connects the engine or external stores to the main wing, and transfers the load acting on the pylon to the main structure of the aircraft. In particular, it should perform the function of separating the external store mounted on the pylon in case of emergency or mission performance. At this time, if the separation of the external store is not performed properly due to peripheral air flow or functional problems during the separation process of the external store, it may seriously impact the survivability of the aircraft. For this reason, to apply an external attachment to an aircraft, it is necessary to prove the stability of the external attachment in the separation situation in advance. In this paper, we present the result of the ground separation test performed to confirm that the external fuel tank, which is an external attachment, can be safely separated from the pylon. As a result of the test, the separation movement of the external fuel tank was measured with a high-speed camera, and the stability of the separation of the external fuel tank from the pylon were confirmed through the ground separation test. Additionally, the test result provides basic data for the stability evaluation of the separation of external attachments in actual aircraft.

Evaluation of Ammonia Emission Coefficient according to the use of Compound Fertilizers when Cultivating Apples and Pears in Orchards (과수원에서 사과 및 배 재배 시 복합비료 시용에 따른 암모니아 배출계수 평가)

  • Kim, Min-Wook;Hong, Sung-Chang;Yu, Seon-Young;Kim, Jin-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.366-372
    • /
    • 2021
  • BACKGROUND: Ammonia is known as a precursor to fine particulate matter, and according to CAPSS, annual ammonia emissions in the agricultural sector were 249,777 tons as of 2018, accounting for about 79.0% of Korea's total ammonia emissions. In particular, ammonia emissions from agricultural land increased by 19,566 tons (10.2%) compared to the previous year. The Ministry of Environment is setting emission statistics using the ammonia emission coefficient developed in Korea in 2008, but researchers in the agricultural field regard it as a coefficient that does not reflect the reality of Korea's agricultural environment. Accordingly, in order to develop ammonia emission coefficients from the cultivation of apples and pears, Korea's representative fruit type, test agricultural land was set in Iksan, Jeollabuk-do. METHODS AND RESULTS: This study attempted to obtain the ammonia emission coefficient by the treatment of the composite fertilizer (N-P2O5-K2O=12-7-9), and the flux was measured using a dynamic flow-through chamber method. As for the chamber, a total of 12 chambers were installed repeatedly in 4 zones and used to develop emission coefficients. Using compound fertilizers during fruit tree cultivation, the ammonia emission coefficient was evaluated as 10.4 kg NH3/ton for pears and 15.3 kg NH3/ton for apples. The reason why the ammonia emission coefficient according to the use of composite fertilizers was calculated higher for apple cultivation is believed to be due to the relatively high pH concentration of apple orchard soil. CONCLUSION(S): This study may provide basic data for upgrading the ammonia emission coefficient when using composite fertilizers in agricultural land. In the future, it might be necessary to upgrade the calculation of emissions through the development of ammonia and fine particulate matter emission coefficients considering the agricultural environment of Korea.

A Study on Hay Preparation Technology for Italian Ryegrass Using Stationary Far-Infrared Dryer (정치식 원적외선 건조기를 이용한 이탈리안 라이그라스 건초 조제 기술 연구)

  • Jong Geun Kim;Young Sang Yu;Yan Fen Li;Li Li Wang;Hyun Rae Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.4
    • /
    • pp.258-263
    • /
    • 2022
  • This experiment was conducted to confirm the possibility of manufacturing artificial Italian ryegrass hay using far-infrared rays in Korea. The machine used in this experiment was a far-infrared ray dryer capable of adjusting temperature, airflow, and far-infrared radiation, and was conducted on Italian ryegrass harvested in May. Conditions for drying were performed by selecting a total of nine conditions, and each condition was set to emission rate of 42 to 45%, and the internal temperature was set to 65℃. The speed of the air flow in the machine was 40-60 m/s, and the overall drying time was 30 minutes for 42% radiation, 25 minutes for 43% radiation, and 20 minutes for 45% radiation. The final dry matter content according to each drying condition was 88.5% on average, and the dry matter content suitable for hay was shown in the all treatment. Looking at the power consumption according to the drying conditions, the lowest was found in the treatment that dried for 20 minutes at 45% radiation. In the drying rate, there was no difference in drying conditions 1 to 5, but a significantly low tendency was shown in conditions 6 to 7. In terms of feed value, CP and IVDMD were higher than raw materials in most drying conditions, and ADF and NDF contents were low, and tended to be high in drying conditions 4, 7, and 8. Through the above results, it was judged that drying conditions 7 and 8 were the most advantageous when considering drying speed, power consumption, and quality.

Estimation of the Required Number of Fan Coil Unit for Surplus Solar Energy Recovery of Greenhouse (온실의 잉여 태양에너지 회수용 FCU 소요대수 검토)

  • Yun, Sung-Wook;Choi, Man Kwon;Kim, Ha Neul;Kang, Donghyeon;Lee, Siyoung;Son, Jinkwan;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.83-88
    • /
    • 2016
  • In this study, previously reported surplus solar energy-related study result and current status of fan coil unit (FCU) for cooling and heating installed in the current sites were briefly examined and then a method to determine the number of FCUs required to recover surplus solar energy was schematically proposed to provide basic data for researchers and technical engineers in this field. The maximum, mean, and minimum outside temperatures during the experiment period were about $28.2^{\circ}C$, $4.4^{\circ}C$, and $-11.5^{\circ}C$, respectively. The horizontal surface solar radiation level outside the greenhouse was in a range of $0.8-20.5MJ{\cdot}m^{-2}$ and mean and total solar radiation were $10.8MJ{\cdot}m^{-2}$ and $1,187.5MJ{\cdot}m^{-2}$. The mean temperature and relative humidity in the greenhouse during the daytime were in a range of 18.8-45.5 and 53.5-77.5%. The total surplus solar energy recovered from the greenhouse during the experiment period was approximately 6,613.4MJ, which could supplement about 6.7% of the total heating energy 98,600.2 MJ. In addition, the number of FCUs installed for heating varies case to case, although similar FCUs are used. Thus, it is necessary to study the installation height, orientation and installation distance as well as the appropriate number of FCUs from the efficient and economical viewpoints. The required numbers of FCUs for surplus solar energy recovery were 8.4-10.9units and 6.1-8.0units based on air mass and circular flow rate that passed through the FCUs. Considering calculation methods and the risks such as efficiency and use environments of FCUs, it was found that about nine units (one unit per $24m^3$ approximately) needed to be installed. The required number of FCUs for surplus solar energy recovery was around one unit per $24m^3$ approximately.

Combustion Characteristic Study of LNG Flame in an Oxygen Enriched Environment (산소부화 조건에 따른 LNG 연소특성 연구)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Dae-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.23-30
    • /
    • 2007
  • The ultimate objective of this study is to develop oxygen-enriched combustion techniques applicable to the system of practical industrial boiler. To this end the combustion characteristics of lab-scale LNG combustor were investigated as a first step using the method of numerical simulation by analyzing the flame characteristics and pollutant emission behaviour as a function of oxygen enrichment level. Several useful conclusions could be drawn based on this study. First of all, the increase of oxygen enrichment level instead of air caused long and thin flame called laminar flame feature. This was in good agreement with experimental results appeared in open literature and explained by the effect of the decrease of turbulent mixing due to the decrease of absolute amount of oxidizer flow rate by the absence of the nitrogen species. Further, as expected, oxygen enrichment increased the flame temperatures to a significant level together with concentrations of $CO_2$ and $H_2O$ species because of the elimination of the heat sink and dilution effects by the presence of $N_2$ inert gas. However, the increased flame temperature with $O_2$ enriched air showed the high possibility of the generation of thermal $NO_x$ if nitrogen species were present. In order to remedy the problem caused by the oxygen-enriched combustion, the appropriate amount of recirculation $CO_2$ gas was desirable to enhance the turbulent mixing and thereby flame stability and further optimum determination of operational conditions were necessary. For example, the adjustment of burner with swirl angle of $30\sim45^{\circ}$ increased the combustion efficiency of LNG fuel and simultaneously dropped the $NO_x$ formation.