• Title/Summary/Keyword: Air-Flow

Search Result 7,009, Processing Time 0.04 seconds

On-site Application of a Vehicle Tunnel Ventilation Simulator (도로터널 환기시뮬레이션 모델 현장적용 연구)

  • 이창우;김효규
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.319-327
    • /
    • 2001
  • Introduction of new design tools has been required to optimally design and operate the ventilation system of long vehicle tunnels.. The demand has led to wide spread use of the simulation technique throughout the would to analysis the dynamic relationship among the variables associated with vehicle tunnel ventilation. This paper aims at performing on-site study at local tunnels to test the applicability of NETVEN, a simulation model vehicle tunnel ventilation. The study was carried out at four urban as well as highway tunnels model of vehicle tunnel ventilation. The study was carried out at four urban as well as highway tunnels employing different ventilation systems as well as traffic methods. There were some discrepancies sound between the simulation output and measurements and the following four factors are considered to mainly cause those disagreement. (1) The real situation shows distinctive transient and retarding characteristics with respect to air flow and contaminant dispersion, while ventilation forces are not steady-state and in particular those traffic and climatic variables show significant instantaneous variation. (3) Near the exit portal, the CO levels show bigger differences. The general trend is that data with higher CO concentrations carry bigger discrepancies. Turbulent diffusion is though to be the main reason for it and also contribute to the fact hat the highest CO concentrations are found at the locations somewhat inward, not at the exit portals. (4) Higher traffic rate results in higher discrepancies of ventilation velocity. Along with the exhaust characteristics, the vehicle aerodynamic characteristics need to be studied continuously in order to reduce the velocity disagreement.

  • PDF

Report for Spreading Culture of Medical Radiation Safety in Korea : Mainly the Activities of the Korean Alliance for Radiation Safety and Culture in Medicine(KARSM) (국내 의료 방사선 안전문화 활동 현황 : 의료방사선안전문화연합회 중심으로)

  • Yoon, Yong-Su;Kim, Jung-Min;Kim, Hyun-Ji;Choi, In-Seok;Sung, Dong-Wook;Do, Kyung-Hyun;Jung, Seung-Eun;Kim, Hyung-Soo
    • Journal of radiological science and technology
    • /
    • v.36 no.3
    • /
    • pp.193-200
    • /
    • 2013
  • There are many concerns about radiation exposure in Korea after Fukushima Nuclear Plant Accident on 2011 in Japan. As some isotope materials are detected in Korea, people get worried about the radioactive material. In addition, the mass media create an air of anxiety that jump on the people's fear instead of scientific approach. Therefore, for curbing this flow, health, medical institute from the world provide a variety of information about medical radiation safety and hold the campaign which can give people the image that medical radiation is safe. At this, the Korean Food and Drug Administration(KFDA) suggested that make the alliance of medical radiation safety and culture on August, 2011. Seven societies and institutions related medical radiation started to research and advertise the culture of medical radiation safety in Korea. In this report, mainly introduce the activities of the Korean Alliance for Radiation Safety and Culture in Medicine(KARSM) for spreading culture of medical radiation safety from 2011 to 2012.

Application of Low Pressure Fogging System for Commercial Tomato Greenhouse Cooling (상업용 토마토온실 냉방을 위한 저압분무식 포그시스템의 적용)

  • Lee, Hyun-Woo;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The objective of the present study is to identify the applicability of a low pressure fogging system for cooling commercial tomato greenhouse. In particular, the cooling system in this experiment utilizes low pressure spray nozzles which were developed in Korea recently. The experimental result that the temperature in fog-cooled greenhouse was lower than the non-cooled greenhouse showed the cooling effect by the low pressure fogging system. But because the relative humidity in fog-cooled greenhouse was comparatively low, the satisfactory cooling effect could be acquired by narrowing the space of fog nozzles and extending fogging time to supply more fog spray quantity. The variation of temperature distribution in fog-cooled greenhouse along timelag was insignificant during short time, but that was great during long period of day. This result showed the variation of temperature along timelag was slight by fog cooling but great by other factors like radiation, ventilation, air flow, etc. The advanced operation technology of fog system was required to reduce the variation of temperature along time lag. We plan to suggest the advanced installation and operation technology of low pressure fogging system for cooling commercial tomato greenhouse by further experiments in near future.

Perfonnance Evaluation of Swaged- and Extruded-type Heat Sinks Used in Inverter for Solar Power Generation (태양광 발전용 인버터 방열에 사용되는 압입형 및 압출형 히트싱크의 방열 성능 평가)

  • Kim, Jung Hyun;Lee, Gyo Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.933-940
    • /
    • 2013
  • In this study, we evaluated the heat release performance of two extruded-type and two swaged-type heat sinks used in an inverter for solar power generation. The number of fins and heat transfer areas of the two swaged-type heat sinks, namely S-62 and S-98, are 62 and 98 and $2.8m^2$ and $5.3m^2$, respectively. Those for the two extruded-type heat sinks, namely, E-38 and E-47, are 38 and 47 and $1.8m^2$ and $1.9m^2$, respectively. The heat release fractions of S-62 and S-98 were measured as 82.7 % and 86.3 %, respectively. Those of E-38 and E47 were measured to be 79.6 % and 81.6 %, respectively. In this experiment, despite the mass flow rates of air entering the heat sinks being almost the same, the heat release fractions increased with heat transfer area. Furthermore, despite S-62's heat transfer area being 47.4 % higher than that of E-47, its heat release fraction was higher by only 1.3 %. We believe that this indicates the better heat transfer property of the extruded-type heat sink. S-98's heat release is only 4.4 % higher than that of S-62, but its heat transfer area is 89.3 % higher; this suggests that its heat transfer area need to be optimized.

Characteristics of Lineament and Fracture System in the North-eastern Area of Yosu Peninsula (여수반도 북동부지역의 선상구조와 단열계 분포특성)

  • 김경수;이은용;김천수
    • The Journal of Engineering Geology
    • /
    • v.9 no.1
    • /
    • pp.31-43
    • /
    • 1999
  • This study aims to quantify the distribution characteristics of the fracture system for the numerical modeling of groundwater flow in the north-eastern area of Yosu peninsula. The study area is composed mainly of volcanic rocks and granite. The regional and site scale lineament in the range of magnitude Order 1 to Order 3 were analyzed from the geologic map, air-photograph and shaded relief map. The geometric parameter of Order 4 fracture system was acquired from the scanline survey on the ground surface. There is a similar trend in the preferred orientation between the regional lineament and the Order 4 fracture system except the Set 4 of Order 4 fracture system which is not prominent in the type. That is classified to three fracture sat of high dip angle and one of ow dip angle. From the lineament trend. The orientation of Order 4 fracture system has similar characteristics in each rock termination mode analysis, it is considered that the fracture system was developed systematically and sequentially from Set 1 to Set 4 Filling materials are distinct relatively in low dip angle set. The fracture spacing follows to lognoral distribution and the fracture frequency corrected by the modified Terzaghi correction ranges from 0.38 to 1.01 per mater in each fracture set. The fracture trace lenght also follows to lognormal distribution and ranges from 2.9m to 3.7m in each fracture set.

  • PDF

A Study on the Effects of Design Parameters of Vertical Ground Heat Exchanger on the Borehole Thermal Resistance (수직밀패형 지중열교환기의 설계인자가 보어홀 전열저항에 미치는 영향에 관한 연구)

  • Chang, Keun Sun;Kim, Min-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.128-135
    • /
    • 2018
  • Currently, vertical closed ground heat exchangers are the most widely utilized geothermal heat pump systems and the major influencing parameters on the performance of ground heat exchangers are the ground thermal conductivity(k) and borehole thermal resistance($R_b$). In this study, the borehole thermal resistance was calculated from the in-situ thermal response test data and the individual effects of design parameters (flow rate, number of pipe, grout composition) on the borehole thermal resistance were analyzed. The grout thermal resistance was also compared with the correlations in the literatures. The borehole thermal resistance of the investigated ground heat exchanger results in 0.1303 W/m.K and the grout thermal resistance (66.6% of borehole thermal resistance) is the most influencing parameter on borehole heat transfer compared to the other design parameters (pipe thermal resistance, 31.5% and convective thermal resistance, 1.9%). In addition, increasing the thermal conductivity of grout by adding silica sand to Bentonite is more effective than the other design improvements, such as an increase in circulating flowrate or number of tubes on enhancing borehole heat transfer.

A Study on the Thermal Characteristics of Jeju type Ground Heat Exchanger for Ground Source Heat Pump System applied to Jeju Island (제주도에 설치된 지열 열펌프 시스템용 제주형 지중열교환기의 열특성 연구)

  • Kim, Min-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.32-38
    • /
    • 2020
  • This study summarizes test methods and evaluation methods for examining the thermal characteristics of Jeju-type ground heat exchangers (GHXs) installed on Jeju Island, and analyzes the ground temperature and thermal characteristics of ground heat exchangers installed in various regions by using thermal response tests (TRT). Jeju Island is composed of volcanic rock layers, and the groundwater flow is well developed. A Jeju-type GHX can be installed up to 30 m from groundwater level after drilling a borehole. The ground heat exchanger has a structure in which several pipes are inserted into the borehole. In order to examine the characteristics of the Jeju-type GHX, tests were conducted on ground heat exchangers installed in four places on Jeju Island (Pyoseon, Jeju, Namwon, and Hallym). As a result of the analysis of the Jeju-type ground heat exchanger, the ground circulating water temperature stabilized according to the heat injection, depending on the installed location, and was formed within one to three hours. The ground heat exchanger capacity in Hallym was highest at 73.4 kW (cooling) and 82.8 kW (heating), and the Jeju-type calculation was lowest at 34.1 kW (cooling) and 23.3 kW (heating).

Estimation of the amount of refrigerant in artificial ground freezing for subsea tunnel (해저터널 인공 동결공법에서의 냉매 사용량 산정)

  • Son, Youngjin;Choi, Hangseok;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.255-268
    • /
    • 2018
  • Subsea tunnel can be highly vulnerable to seawater intrusion due to unexpected high-water pressure during construction. An artificial ground freezing (AGF) will be a promising alternative to conventional reinforcement or water-tightening technology under high-water pressure conditions. In this study, the freezing energy and required time was calculated by the theoretical model of the heat flow to estimate the total amount of refrigerant required for the artificial ground freezing. A lab-scale freezing chamber was devised to investigate changes in the thermal and mechanical properties of sandy soil corresponding to the variation of the salinity and water pressure. The freezing time was measured with different conditions during the chamber freezing tests. Its validity was evaluated by comparing the results between the freezing chamber experiment and the numerical analysis. In particular, the freezing time showed no significant difference between the theoretical model and the numerical analysis. The amount of refrigerant for artificial ground freezing was estimated from the numerical analysis and the freezing efficiency obtained from the chamber test. In addition, the energy ratio for maintaining frozen status was calculated by the proposed formula. It is believed that the energy ratio for freezing will depend on the depth of rock cover in the subsea tunnels and the water temperature on the sea floor.

Investigation and Evaluation of Algae Removal Technologies Applied in Domestic Rivers and Lakes (국내 하천/호수에 적용된 조류저감기술의 조사 및 평가)

  • Byeon, Kyu Deok;Kim, Ga Young;Lee, Inju;Lee, Saeromi;Park, Jaeroh;Hwang, Taemun;Joo, Jin Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.7
    • /
    • pp.387-394
    • /
    • 2016
  • Commercial 28 algae removal technologies that have been applied in domestic rivers and lakes with green tide were investigated, analyzed and classified. The classification of algae removal technologies was based on the three criteria (i.e., principle, flow rate of water body, and application period). Also, algae removal technologies were evaluated in terms of cost effectiveness, field applicability, effect durability, and eco friendliness. From the analysis results, technologies using physical, chemical, biological, and convergent controls were 32.2%, 25%, 21.4%, and 21.4%, respectively. The 75% of technologies have been applied to stagnant water body (${\leq}0.2m/s$). Also, algae harvesting ship with dissolved air flotation, conveyor belt and filtration processes and natural floating coagulant were found to have better field applicability, compared to other technologies. However, proper algae removal technology in specific rivers and lakes should be chosen after the evaluation of long-term pilot scale field test. Also, development of energy and resource recovery technologies from algae biomass is warranted.

A study on establishing the aerodynamic database though the external flow method of a rotating vehicle (회전 운동하는 비행체의 외부 유동장 해석을 통한 공력데이터베이스 구축 연구)

  • Kang, Tae-Woo;Ahn, Jong-Moo;Lee, Hee-Rang;Choi, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.41-47
    • /
    • 2017
  • With the introduction of new technologies, ground weapons have led to the development of artificial intelligence and the attention of major developed countries. In this study, CFD was performed through the BLU-103 model to obtain aerodynamic data for aircraft that are subjected to rotational motion. To simulate the steady-state of a rotating body, the body was fixed and the principle of rotating the body by rotating the surrounding air was used. In order to examine the aerodynamic feasibility of the rotating aircraft, the analysis was carried out at intervals of $30^{\circ}$ angle from $0^{\circ}$ to $90^{\circ}$ for the simple shape and the side slip angle. It was confirmed that the drag coefficient for the simple model satisfies the quantitative results of 1.0 ~ 1.2 through CD presented in "Drag Book". The aerodynamic data was constructed by applying the valid input verified through the simple type analysis conditions to the actual shape, and the tendency was analyzed. The analysis confirmed that CX, CZ and CY increase not only in the simple model but also in the rotation of the actual model. Especially, the influence of CZ was judged to have contributed to the flight.