• Title/Summary/Keyword: Air-Dynamic Bearing

Search Result 130, Processing Time 0.022 seconds

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Considering the Flexibility of Supporting Structures and an Head-suspension-actuator in a HDD (지지구조와 헤드-서스펜션-액추에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.24-32
    • /
    • 2007
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts the vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

A Study on the Influence of Nonlinearity Coefficients in Air-Bearing Spindle Parametric Vibration

  • Chernopyatov, Y.A.;Lee, C.M.;Chung, W.J.;Dolotov, K.S.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 2005
  • The development of the high-efficiency machine-tools equipment and new cutting tool materials with high hardness, heat- and wear-resistance has opened the way to application of high-speed cutting process. The basic argument of using of high-speed cutting processes is the reduction of time and the respective increase of machining productivity. In this sense, the spindle units may be regarded as one of the most important units, directly affecting many parameters of high-speed machining efficiency. One of the possible types of spindle units for high-speed cutting is the air-bearing type. In this paper, we propose the mathematical model of the dynamic behavior of the air-bearing spindle. To provide the high-level of speed capacity and spindle rotation accuracy we need the adequate model of "spindle-bearings" system. This model should consider characteristics of the interactions between system components and environment. To find the working characteristics of spindle unit we should derive the equations of spindle axis movement under the affecting factors, and solve these equations together with equations which describe the behavior of lubricant layer in bearing (bearing stiffness equations). In this paper, the three influence coefficients are introduced, which describe the center of spindle mass displacement, angle of shaft rotation around the axes under the unit force application and that under the unit torque application. These coefficients are operated in the system of differential equations, which describes the spindle axis spatial movement. This system is solved by Runge-Kutta method. Obtained trajectories and amplitude-frequency characteristics were then compared to experimental ones. The analysis shows good agreement between theoretical and experimental results, which confirms that the proposed model of air-bearing spindle is correctis correct

Rotordynamic design of a turbogenerator supported by air foil bearings (공기포일베어링에 지지된 터보제너레이터의 회전체동역학적 설계)

  • Kim, Y.C.;An, K.Y.;Park, M.R.;Park, J.Y.;Choi, B.S.;Lee, A.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.271-276
    • /
    • 2006
  • This paper shows the rotordynamic characteristics of a turbo-generator for a BOP of a fuel cell system. The rotor-bearing system consists of magnetic shaft and compressor-turbine shaft, and the two shafts are connected by spline coupling and supported by oil free air foil bearing. Preliminary design according to several parameter is considered in detail. Static and dynamic characteristics of the AFB are estimated by the soft elasto-hydrodynamic analysis technique and the perturbation method. The results of the natural frequencies, mode shape, and unbalance response analysis are presented.

  • PDF

A Study on the Performances of Hydrodynamic Air Lubricated Thrust Bearings of Several Types (여러가지 형식의 동압 공기 윤활 스러스트 베어링의 성능에 대한 연구)

  • Kang, Ji-Hoon;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.18 no.5
    • /
    • pp.364-370
    • /
    • 2002
  • In this paper, numerical analyses were undertaken to calculate the static and dynamic performances of step-pocket, inward pumping spiral grooved, outward pumping spiral grooved and herringbone grooved bearings. For each bearing, optimal values for various design parameters were obtained to maximize the load capacity and the stiffness and bearing performances were calculated. The optimized performances of these bearings were compared to conclude that the performance of step-pocket bearing is better than the other bearings.

Free and Forced Vibration Analysis of a Hard Disk Drive Considering the Flexibility of Spinning Disk-Spindle, Actuator and Supporting Structure (회전 디스크-스핀들, 액츄에이터와 지지구조의 유연성을 고려한 하드 디스크 드라이브의 고유 및 강제 진동 해석)

  • Seo, Chan-Hee;Jang, Gun-Hee;Lee, Ho-Seong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.660-665
    • /
    • 2006
  • This paper presents a finite element method to analyze the free and forced vibration of a hard disk drive (HDD) considering the flexibility of a spinning disk-spindle with fluid dynamic bearings (FDBs), an actuator with pivot bearings, an air bearing between head-disk interface and the base with complicated geometry. Finite element equation of each component is consistently derived with the satisfaction of the geometric compatibility of the internal boundary between each component. The spinning disk, hub and FDBs are modeled by annular sector elements, beam elements and stiffness and damping elements, respectively. The actuator am, E-block, suspension and base plate are modeled by tetrahedral elements. The pivot bearing in the actuator and the air bearing between head-disk interfaces are modeled by the stiffness element with five degrees of freedom and the axial stiffness, respectively. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by solving the associated eigenvalue problem with the restarted Arnoldi iteration method. Modal and shock testing are performed to show that the proposed method well predicts the vibration characteristics of a HDD.

  • PDF

Development of precision vibration isolation table and study of dynamic characteristics with experiment (정밀 제진대 개발 및 동특성에 관한 실험적 연구)

  • 김인수;김종연;한문성;김영중
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.329-334
    • /
    • 2001
  • Recently, the high precision technology can not be developed continuously if we don't have anti vibration technology. Vibration isolation technology using an air spring and laminated robber bearing is widely used because it has excellent vibration isolation characteristics. We developed high precision vibration table with two good element(air spring and LRB) for semiconductor factory. Air Spring is used for isolating the vertical vibration and LRB is used for isolating the horizontal Vibration. As a result, It has D-Class degree in BBR-Criteria. In this paper, we talk about orifice characteristics in the self-damped air spring and design flow of the laminated robber bearing. The orifice characteristics is delicate shade of length and diameter. When we do experimentation to find orifice characteristics, length is fixed and diameter is changed. The orifice diameter is the wider and the air spring stiffness is the softer.

  • PDF

Analysis of the Conical Air Bearings with two Circumferential Grooves (2 열 원주 그루브 급기 원추형 공기베어링의 해석)

  • 김성균;박상신;김우정;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1993.12a
    • /
    • pp.51-56
    • /
    • 1993
  • The conical bearing can be used to support the radial and thrust load simultaneously. Two circumferential grooves with discrete hole restrictions are made on the bearing surface in order to increase stiffness. In this paper, the dynamic characteristics of this type of bearings are calculated such as stiffness and champing coefficients. As a results of theoretical analysis, it is verified that there exist the groove depth and distance between two grooves which produce the maximum stiffness at the given bearing dimensions.

  • PDF

Analysis of the Conical Air Bearings with two Circumferential Grooves (2열 원주 그루브 급기 원추형 공기베어링의 해석)

  • 김성균;박상신;한동철
    • Tribology and Lubricants
    • /
    • v.10 no.1
    • /
    • pp.56-61
    • /
    • 1994
  • The conical bearing can be used to support the radial and thrust load simultaneously. Two circumferential grooves with discrete hole restrictions are made on the bearing surface in order to increase stiffness. In this paper, the dynamic characteristics of this type of bearings are calculated such as stiffness and damping coefficients. As a results of theoretical analysis, it is verified that there exist the groove depth and distance between two grooves which produce the maximum stiffness at the given bearing dimensions.

A Comparison study on the Performance of Several Types of Air Lubricated Hydrodynamic Thrust Bearings (여러 가지 형식의 동압 공기 윤활 스러스트 베어링의 성능에 대한 비교 연구)

  • 강지훈;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.197-203
    • /
    • 2001
  • In this paper, numerical analyses were undertaken to calculate the static and dynamic performances of step-pocket, inward pumping spiral grooved, outward pumping spiral grooved and herringbone grooved bearings. For each bearing, optimal values for various design parameters were obtained to maximize the load capacity and the stiffness and bearing performances were calculated. The optimized performances of these bearings were compared to conclude that the performance of step-pocket bearing is better than the other bearings.

  • PDF

Study on the Flying Stab3B3ty of the FEMTO(20%) Slider (FEMTO(20%) 슬라이더의 부상안정성 고찰)

  • 강태식;이철우;조긍연;정재명;정준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.887-887
    • /
    • 2004
  • The areal density of the hard disk drive(HDD) has been increased due to technological advances recently. To achieve the high areal density magnetic recording requires an extremely small gap between the air-bearing surface (ABS) and disk. At the same time, the slider mass and size should be reduced to minimize the physical contact under the operational and environmental conditions. Almost all of 2.5"HDD companies will get ready for adoption of FEMTO slider and already utilized the small slider. FEMTO and small size slider will be mainstream in the 2.5" and other small form factor HDD in the near future. In this study, the flying characteristic of FEMTO slider was examined. Based on the simulation, FEMTO slider is very stable in flying dynamic under the disk modulation, however the flying height sensitivity of the manufacturing tolerances is much bigger than PICO slider. And the other characteristics like impulse response and load/unload dynamic were also examined in this study.tudy.

  • PDF