• 제목/요약/키워드: Air-Catalyst

Search Result 442, Processing Time 0.02 seconds

Evaluation of nitrogen oxide removal characteristics using TiO2 (TiO2를 이용한 질소산화물 제거 특성 평가)

  • Park, Jun-Gu;Lim, Hee-Ah;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.668-675
    • /
    • 2019
  • Fine dust in air pollutants is recognized as one of the most serious social environmental problems. Most of the NOx is generated in a combustion process such as that of a coal-fired power plant, and therefore efficient elimination of the NOx from the coal-fired power plants is needed. This study investigates the removal efficiency of using $TiO_2$, a photocatalyst, to remove NOx by Selective Catalytic Reduction (SCR). To evaluate the NOx removal efficiency, $TiO_2$ catalyst and phosphate binder were mixed on the surface of the $Al_2O_3$ substrate with the exothermic agent, and the substrate was heat-treated. The NOx removal efficiency of the catalysts was evaluated according to the temperature, and XRD, SEM, TG-DTA and BET analyzes were performed to investigate the physicochemical properties of the catalysts. NOx removal efficiency was 58.7%~65.9% at 20min, 63.7~66.0% at 30min with temperature change according to time($250^{\circ}C{\sim}500^{\circ}C$). The $TiO_2$ used in the SCR for NOx removal is judged to have the most efficient removal efficiency at $300^{\circ}C$.

Proposal on the Creation of a New Space Organization for the Moon and Celestial Bodies' Exploitation (달과 천체 개발을 위한 새로운 우주기구의 창설에 관한 제안)

  • Kim, Doo-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.29 no.1
    • /
    • pp.161-198
    • /
    • 2014
  • The idea of creating an International Space Exploitation Agency (tentative title: hereinafter referred to ISEA) is only my academic and theoretical opinion. It is necessary for us to establish ISEA as an international organization for the efficient and rapid exploitation of natural resources in the moon and other celestial bodies. The creation of ISEA as a new international organization is based on the Article 11, 5 and Article 18 of the 1979 Moon Agreement. In order to create it as a preliminary procedure, it needs to make the Draft for the Convention on the Establishment an ISEA among the space-faring countries. The main contents of this paper is composed of (1) introduction, (2) joint exploitation of the natural resources (Heliumn-3, etc.) in the moon and ISEA, (3) activities for the exploitation of moon and other celestial bodies by the space-faring powers, (4) legal problems and Solution for the exploitation and mining rights of the natural resources in the moon, mars and celestial bodies, (5) procedure of creating an ISEA, (6) the principal points that need to be included in the draft for the ISEA convention, (7) conclusion. The creation of an ISEA would lead to a strengthening of the cooperation among the States deemed essential by the global community towards joint undertakings in space and would act as a catalyst for the efforts on the exploitation of the natural resources moon, mars, Venus, Mercury and other celestial bodies and allow resources, technology, manpower and finances to be centrally managed in an independent fashion to the benefit of the space-faring countries. It is desirable and necessary for us to create ISEA in order to promote cooperation in the field of space policy, law, science technology and industry etc. among the space-faring countries. The creation of the ISEA will be promoted the international cooperation among the space-faring countries in exploration and exploitations of the natural resources in the moon, Mars, Venus, Mercury and other celestial bodies. Finally, it should be noted that the political drive will be necessary not only to set up the organization ISEA, but also study a subsequent measures. It is also necessary for us to create the ISEA in order to develop the space industry, to strengthen friendly relations and to promote research cooperation among the space-faring countries based on the new ideology and creative ideas. If the heads (president or prime minister) of the space super-powers including the UNCOPUOS will be agreed to establish ISEA at a summit conference, 1 believe that it is possible to establish an ISEA in the near future.

A Study of Nitrous Oxide Decomposition using Calcium Oxide (Calcium Oxide를 이용한 N2O 분해에 관한 CO2의 영향 연구)

  • Paek, Jin-Young;Park, Yeong-Sung;Shun, Dowon;Bae, Dal-Hee
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.746-751
    • /
    • 2002
  • Fluidized bed combustion is a coal combustion technology that can reduce both SOx and NOx emission; SOx is removed by limestone that is fed into the combustion chamber and the NOx is reduced by low temperature combustion in a fluidized bed combustor and air stepping, but $N_2O$ generation is quite high. $N_2O$ is not only a greenhouse gas but also an agent of ozone destruction in the stratosphere. The calcium oxide(CaO) is known to be a catalyst of $N_2O$ decomposition. This study of $N_2O$ decomposition reaction in fixed bed reactor packed over CaO bed has been conducted. Effects of parameters such as concentration of inlet $N_2O$ gas, reaction temperature, CaO bed height and effect of $CO_2$, NO, $O_2$ gas on the decomposition reaction have been investigated. As a result of the experiment, it has been shown that $N_2O$ decomposition reaction increased with the increasing fixed bed temperature. While conversion of the reaction was decreased with increasing $CO_2$ concentration. Also, under the present of NO, the conversion of $N_2O$ decomposition is decreased. From the result of kinetic study gained the heterogeneous reaction rate on $N_2O$ decomposition. In the case of $N_2O$ decomposition over CaO, heterogeneous reaction rate is. $\frac{d[N_2O]}{dt}=\frac{3.86{\times}10^9{\exp}(-15841/R)K_{N_2O}[N_2O]}{(1+K_{N_2O}[N_2O]+K_{CO_2}[CO_2])}$. In this study, it is found that the calcium oxide is a good catalyst of $N_2O$ decomposition.

Study on Hydrogen Production and CO Oxidation Reaction using Plasma Reforming System with PEMFC (고분자 전해질 연료전지용 플라즈마 개질 시스템에서 수소 생산 및 CO 산화반응에 관한 연구)

  • Hong, Suck Joo;Lim, Mun Sup;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.656-662
    • /
    • 2007
  • Fuel reformer using plasma and shift reactor for CO oxidation were designed and manufactured as $H_2$ supply device to operate a polymer electrolyte membrane fuel cell (PEMFC). $H_2$ selectivity was increased by non-thermal plasma reformer using GlidArc discharge with Ni catalyst simultaneously. Shift reactor was consisted of steam generator, low temperature shifter, high temperature shifter and preferential oxidation reactor. Parametric screening studies of fuel reformer were conducted, in which there were the variations of the catalyst temperature, gas component ratio, total gas ratio and input power. and parametric screening studies of shift reactor were conducted, in which there were the variations of the air flow rate, stema flow rate and temperature. When the $O_2/C$ ratio was 0.64, total gas flow rate was 14.2 l/min, catalytic reactor temperature was $672^{\circ}C$ and input power 1.1 kJ/L, the production of $H_2$ was maximized 41.1%. And $CH_4$ conversion rate, $H_2$ yield and reformer energy density were 88.7%, 54% and 35.2% respectively. When the $O_2/C$ ratio was 0.3 in the PrOx reactor, steam flow ratio was 2.8 in the HTS, and temperature were 475, 314, 260, $235^{\circ}C$ in the HTS, LTS, PrOx, the conversion of CO was optimized conditions of shift reactor using simulated reformate gas. Preheat time of the reactor using plasma was 30 min, component of reformed gas from shift reactor were $H_2$ 38%, CO<10 ppm, $N_2$ 36%, $CO_2$ 21% and $CH_4$ 4%.

Hydrogen Supply to PEMFC for Unmanned Aero Vehicles Using Hydrolysis Reaction of NaBH4 (NaBH4 가수분해 반응에 의한 무인항공기용 PEMFC 수소공급)

  • Jung, Hyeon-Seong;Jo, Byung-Joo;Lee, Jung-Hoon;Lee, Han-Jong;Na, Il-Chai;Chu, Cheun-Ho;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.11-15
    • /
    • 2016
  • Proton Exchange Membrane Fuel Cells (PEMFC) instead of batteries is appropriate for long time flight of unmanned aero vehicles (UAV). In this work, $NaBH_4$ hydrolysis system supplying hydrogen to PEMFC was studied. In order to decrease weight of $NaBH_4$ hydrolysis system, enhancement of hydrogen yield, recovery of condensing water and maintenance of stable hydrogen yield were studied. The hydrogen yield of 3.4% was increased by controlling of hydrogen pressure in hydrolysis reactor. Condensing water formed during air cooling of hydrogen was recovered into storage tank of $NaBH_4$ solution. In this process the condensing water dissolved $NaBH_4$ powder and then addition of $NaBH_4$ solution decreased system weight of 14%. $NaBH_4$ hydrolysis system was stably operated with hydrogen yield of 96% by 2.0g Co-P-B catalyst for 10 hours at 2.0L/min hydrogen evolution rate.

Development of Land Fill Gas(LFG)-MGT Power Generation and Green House Design Technology (쓰레기 매립지 MGT 발전 및 유리온실 설계기술개발)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Lee, Jung-Bin
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.13-20
    • /
    • 2011
  • The high fuel flexibility of Micro Gas Turbine(MGT) has boosted their use in a wide variety of applications. Recently, the demand for biogas generated from the digestion of organic wastes and landfill as a fuel for gas turbines has increased. We researched the influence of firing landfill gas(LFG) on the performance and operating characteristics of a micro gas turbine combined heat and power system. $CH_4$ and $CO_2$ simultaneous recovery process has been developed for field plant scale to provide an isothermal, low operating cost method for carrying out the contaminants removal in Land Fill Gas(LFG) by liquid phase catalyst for introduce into the green house for the purpose of $CO_2$ rich cultivation of the plants. Methane purification and carbon dioxide stripping by muti panel autocirculation bubble lift column reactor utilizing Fe-EDTA was conducted for evaluate optimum conditions for land fill gas. Based on inflow rate of LFG as 0.207 $m^3$/min, 5.5 kg/$cm^2$, we designed reactor system for 70% $CH_4$ and 27% $CO_2$ gas introduce into MGT system with $H_2S$ 99% removal efficiency. A green house designed for four different carbon dioxide concentration from ambient air to 1500 ppm by utilizing the exhaust gas and hot water from MGT system.

Heterogeneously Catalyzed Oxidations of Cyclopentene and of 1-Pentene (시클로펜텐과 1-펜텐의 불균일 촉매 산화반응)

  • Yang, Hyun S.;Kim, Young H.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.888-901
    • /
    • 1996
  • Oxidations of cyclopentene and of 1-pentene with air have been studied on a V/Mo/P/Al/Ti-mixed oxide catalyst in a fixed bed integral reactor. At high levels of conversion maleic anhydride was in each case produced as the major organic product, along with minor amounts of phthalic anhydride and, only starting from 1-pentene, also of citraconic anhydride. At lower levels of conversion a total of 30 organic products have been identified, some of which may be intermediates on the way from the substrates to the three anhydrides mentioned above. Based on the dependence of selectivities of the organic products on conversion, reaction schemes for the formation of maleic anhydride, phthalic anhydride and citraconic anhydride have been proposed. Oxidation at $310^{\circ}C$ led to increasing conversions and selectivities for maleic anhydride with decreasing space velocities. The highest selectivities for maleic anhydride were obtained at conversion of ca. 100%. Oxidation at a constant space velocity of $2{\cdot}10^4h^{-1}$ led to increasing conversions with increasing temperatures in the range of $300^{\circ}C{\sim}420^{\circ}C$, while the selectivity for maleic anhydride passed through a maximum value of ca. 39% at $370^{\circ}C$ in the oxidation of cyclopentene and a maximum value of ca. 30% at $400^{\circ}C$ in the oxidation of 1-pentene.

  • PDF

Preparation and Characterization of New NiO-ZrO2/WO3 Catalyst for Ethylene Dimerization (에틸렌 이량화를 위한 새로운 NiO-ZrO2/WO3촉매의 제조와 특성)

  • Sohn, Jong Rack;Shin, Dong Cheol;Park, Man Young
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.1006-1014
    • /
    • 1996
  • A series of catalysts, $NiO-ZrO_2/WO_3$, for ethylene dimerization were prepared by coprecipitation from a solution of nickel chloride - zirconium oxychloride mixture followed by dry impregnation with an aqueous solution of ammonium metatungstate and calcination in air. On the basis of the results obtained from x-ray diffraction and DSC, the addition of NiO and $WO_3$ to $ZrO_2$ shifted the transition of $ZrO_2$ from amorphous to a tetragonal phase toward higher temperatures due to the interaction between NiO(or $WO_3$) and $ZrO_2$. $NiO-ZrO_2$ without $WO_3$ was inactive for the ethylene dimerization, but $NiO-ZrO_2/WO_3$ was found to be very active even at room temperature. The high catalytic activity of $NiO-ZrO_2/WO_3$ was closely correlated with the increase of acid strength by the inductive effect of $WO_3$.

  • PDF

Effect of Sludge Pellets on $NO_x$ REmoval in $BaTiO_3$-sludge Packed-bed Reactor ($BaTiO_3$-슬러지 Packed-bed형 반응기에서 $NO_x$제거에 미치는 슬러지의 영향)

  • 박재윤;송원섭;고희석;박상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.861-867
    • /
    • 2001
  • In this paper, in order to investigate the catalytic effect of the sludge exhausted from waterworks on NO$_{x}$ removal, we measure NO removal characteristics with and without sludge pellets in BaTiO$_3$-sludge packed-bed reactor of plate-plate geometry. NO initial concentration is 50 ppm balanced with air and a gas flow rate is 5ι/min. Gas temperature is changed from 25 to 10$0^{\circ}C$ to investigate the role of sludge pellet on removing active oxygen species and NO$_2$. BaTiO$_3$pellets is filled for coronal discharge at upstream of reactor and sludge pellets is filled for catalytic effect at downstream of reactor. The volume percent of sludge pellets to BaTiO$_3$pellets is changed from 0% to 100% and AC voltage is supplied to the reactor for discharging simulated gases. In the results, when sludge pellets is put at the downstream of plasma reactor, NO removal rate is slightly increased. However, NO$_2$and $O_3$ as by-products during NO removal is significantly decreased from 51ppm without sludge pellets to 5 ppm with sludge pellets and from 50 ppm without sludge pellets to 0.004ppm with sludge pellets, respectively. Therefore, NO$_{x}$(NO+NO$_2$) removal rate is increased up to 93%. It is thought that sludge pellet maybe react with active oxygen species and NO$_2$ generated by corona discharge in surface of BaTiO$_3$pellets, the then NO$_2$O$_3$as by-products are considerably decreased. When we increase gas temperature from room temperature to 10$0^{\circ}C$, NO removal rate is decreased, while NO$_2$ concentration is independent on gas temperature. These result suggest that the removal mechanism of active oxygen species and NO$_2$in sludge pellet is not absorption, but chemical reaction. Therefore we expect that sludge pellets exhausted for waterworks could be used as catalyst for NO$_{x}$ removal with high removal rate and low by-product.oduct.

  • PDF

Polymerization of Hydrosilanes and Vinyl Monomers in the Presence of Transition Metal Complex

  • Kim, Myoung-Hee;Lee, Jun;Cha, Hyo Chang;Shin, Joong-Hyeok;Woo, Hee-Gweon
    • Journal of Integrative Natural Science
    • /
    • v.2 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • This minireview provides the chosen examples of our recent discoveries in the polymerization of hydrosilanes, dihydrosilole, lactones, and vinyl derivatives using various catalysts. Hydrosilanes and lactones copolymerize to give poly(lactone-co-silane)s with $Cp_2MCl_2$/Red-Al (M = Ti, Zr, Hf) catalyst. Hydrosilanes (including dihydrosilole) reduce noble metal complexes (e.g., $AgNO_3$, $Ag_2SO_4$, $HAuCl_4$, $H_2PtCl_6$) to give nanoparticles along with silicon polymers such as polysilanes, polysilole, polysiloxanes (and silicas) depending on the reaction conditions. Interestingly, phenylsilane dehydrocoupled to polyphenylsilane in the inert nitrogen atmosphere while phenylsilane dehydrocoupled to silica in the ambient air atmosphere. $Cp_2M/CX_4$ (M = Fe, Co, Ni; X = Cl, Br, I) combination initiate the polymerization of vinyl monomers. In the photopolymerization of vinyl monomers using $Cp_2M/CCl_4$ (M = Fe, Co, Ni), the photopolymerization of MMA initiated by $Cp_2M/CCl_4$ (M = Fe, Co, Ni) shows while the polymerization yield decreases in the order $Cp_2Fe$ > $Cp_2Ni$ > $Cp_2Co$, the molecular weight decreases in the order $Cp_2Co$ > $Cp_2Ni$ > $Cp_2Fe$. For the photohomopolymerization and photocopolymerization of MA and AA, the similar trends were observed. The photopolymerizations are not living. Many exciting possibilities remain to be examined and some of them are demonstrated in the body of the minireview.

  • PDF