• 제목/요약/키워드: Air to water

검색결과 6,142건 처리시간 0.037초

단순 급수관로계내의 에어챔버 및 어레스터의 수격방지효과에 관한 실험적 연구 (An Experimental Study on the Effect of Water Hammer Arresters and Air Chambers in a Simple Water Piping System)

  • 한화택;김종만
    • 설비공학논문집
    • /
    • 제8권1호
    • /
    • pp.37-44
    • /
    • 1996
  • Water hammer pressure waves were measured in a simplified water piping system with and without arresters and air chambers by the operations of the solenoid valve. Experiments were performed to investigate the effects of the location of the arresters and the effects of the volume of the air chambers on maximum and minimum water hammer pressures and wave frequency for various flow rates.

  • PDF

차세대 고효율 용존공기 부상공정(High Rate DAF)의 개발 (Development of Dissolved Air Flotation Technology from 1st Generation to the Newest or 3rd One (Very Thick Microbubble Bed) with High Flowrates DAF in Turbulent Flow Conditions)

  • Kiuru, H.J.
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.228-234
    • /
    • 2004
  • Dissolved air flotation (DAF), in which suspended solids are removed from water by means of micro-size air bubbles raising slowly up in water and lifting solids from water (smaller than those) attached onto the micro-bubbles as well as those (larger than solids) being attached on these, have been used in water and wastewater since 1920s. The dissolved air flotation technology was originally based on the laminar flow conditions prevailing in water to be treated, but the latest development in that technology has led now to a situation, in which the flow conditions may also be turbulent ones in the modem dissolved air flotation units. Despite of that, the flotation phenomenon used in this unit operation for removal suspended solids from water or wastewater is still the same.

모세관 모델을 이용한 불포화토양의 물-가스 접촉면적 및 가스공극 크기분포의 계산 및 검증 (Capillary Bundle Model for the Estimation of Air-water Interfacial Area and the Gas-filled Pore Size Distribution in Unsaturated Soil)

  • 김헌기
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권1호
    • /
    • pp.1-7
    • /
    • 2021
  • Air-water interfacial area is of great importance for the analysis of contaminant mass transfer processes occurring in the soil systems. Capillary bundle model has been proposed to estimate the specific air-water interfacial areas in unsaturated soils. In this study, the measured air-water interfacial areas of a soil (loam) using the gaseous interfacial tracer technique were compared to those from capillary bundle model. The measured values converged to the specific solid surface area (7.6×104 ㎠/㎤) of the soil. However, the simulated air-water interfacial areas based on the capillary bundle model deviated significantly from those measured. The simulated values were substantially over-estimated at low end of the water content range, whereas the model under-estimated the air-water interfacial area for the most of the water content range. This under-estimation is considered to be caused by the nature of the capillary bundle model that replaces the soil pores with a bundle of glass capillaries and thus no surface roughness at the inner surface of the capillaries is taken into account for the estimation of the air-water interfacial area with the capillary bundle model. Subsequently, appropriate correction is necessary for the capillary bundle model to estimate the air-water interfacial area in soils. Since the soil-moisture release curve data is the basis of the capillary bundle model, the model can be of use due to its simplicity, while the gaseous tracer technique requires complicated experimental equipment followed by moment analysis of the breakthrough curves. The size distribution profile of the pores filled with gas estimated by the water retention curve was found to be similar to that of particle size at different size range. The shifted distribution of gas-filled pores toward smaller size side compared to the particle size distribution was also found.

물-공기 직접접촉식 공기조화장치의 성능해석 (Performance Analysis of Water/Air Direct Contact Air Conditioning System)

  • 유성연;권화길;김광영
    • 설비공학논문집
    • /
    • 제16권2호
    • /
    • pp.175-183
    • /
    • 2004
  • Performance of the water/air direct contact air conditioning system, in which heat and mass are directly transferred between air and water droplet, is simulated using semi-empirical method. Direct contact system improves transport efficiency compared to conventional indirect contact system. In this study, correlations for h$_{c}$A / c$_{pm}$ which represent the capacity of direct contact system are derived as a function of air and water flowrate from the experimental data. Cooling and heating performance of the water/air direct contact air conditioning system are evaluated using these correlations.ons.

공기열원 히트펌프의 난방 성능특성에 관한 실험적 연구 (Experimental Study on Heating Performance Characteristics of Air Source Heat Pump with Air to Water Type)

  • 이권재;권영철;전종균;박삼진;권정태;허철
    • 설비공학논문집
    • /
    • 제23권6호
    • /
    • pp.400-405
    • /
    • 2011
  • This paper presents the heating performance characteristics of the air source heat pump with air to water type. The heating capacity, COP, P-h diagram were measured at various operating conditions, air-side temperatures, relative humidities, and inlet/outlet water temperature under the standard heating condition of KS B 6275. The experimental data for the heat pump were measured using the air-enthalpy calorimeter and the constant temperature water bath. As the air-side temperature increases, the heating capacity and COP increase. The effect of the air-side relative humidities on the heat pump performance is insignificant. The heat pump performance on inlet and outlet water temperatures and air-side temperatures(-7, -11, $-15^{\circ}C$) were studied. Heating capacity and COP increased about 27~39% with the air-side temperature increasing. Enthalpy between the front and the rear of condenser decreased about 6% by increasing of the inlet water temperature. These results can be utilized in the design of the air source heat pump system with air to water type.

CFD 기반 유체충격 해석에서 공기 압축성 효과 (Air Compressibility Effect in CFD-based Water Impact Analysis)

  • 찬후피;안형택
    • 대한조선학회논문집
    • /
    • 제48권6호
    • /
    • pp.581-591
    • /
    • 2011
  • This paper describes the air compressibility effect in the CFD simulation of water impact load prediction. In order to consider the air compressibility effect, two sets of governing equations are employed, namely the incompressible Navier-stokes equations and compressible Navier-Stokes equations that describe general compressible gas flow. In order to describe violent motion of free surface, volume-of-fluid method is utilized. The role of air compressibility is presented by the comparative study of water impact load obtained from two different air models, i.e. the compressible and incompressible air. For both cases, water is considered as incompressible media. Compressible air model shows oscillatory behavior of pressure on the solid surface that may attribute to the air-cushion effect. Incompressible air model showed no such oscillatory behavior in the pressure history. This study also showed that the CFD simulation can capture the formation of air pockets enclosed by water and solid surface, which may be the location where the air compressibility effect is dominant.

공기조화기내 메쉬삽입 물-공기 직접접촉의 열전달 특성 연구 (Air Handling Unit Utilizing Water/Air Direct Contact Heat Exchanger with Mesh)

  • 전용한;김종윤;김남진;서태범;김종보
    • 설비공학논문집
    • /
    • 제20권1호
    • /
    • pp.75-80
    • /
    • 2008
  • The objective of this research was to investigate the enhancement of heat transfer by mesh in water/air direct contact air conditioning system. Mesh is inserted as a turbulent promoter in front of the water injection nozzle. The heat transfer characteristics with and without mesh and the effect of the number of inserted mesh and mesh porosity size have been studied experimentally. Inserted mesh improves heat transfer efficiency compared to non~inserted mesh system and heat transfer efficiency increased as the number of mesh is increased. Meanwhile, heat transfer efficiency decreased as the porosity of the mesh is increased. With inserted mesh, inlet and outlet temperature difference of air increased more than 50%. Heat exchange time of water/air to reach the 100% humidity decreased less than 30%. This result shows inserted mesh can enhance the performance of the water/air direct contact air conditioning system.

Observation of Water Consumption in Zn-air Secondary Batteries

  • Yang, Soyoung;Kim, Ketack
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권4호
    • /
    • pp.381-386
    • /
    • 2019
  • Zn-air battery uses oxygen from the air, and hence, air holes in it are kept open for cell operation. Therefore, loss of water by evaporation through the holes is inevitable. When the water is depleted, the battery ceases to operate. There are two water consumption routes in Zn-air batteries, namely, active path (electrolysis) and passive path (evaporation and corrosion). Water loss by the active path (electrolysis) is much faster than that by the passive path during the early stage of the cycles. The mass change by the active path slows after 10 h. In contrast, the passive path is largely constant, becoming the main mass loss path after 10 h. The active path contributes to two-thirds of the electrolyte consumption in 24 h of cell operation in 4.0 M KOH. Although water is an important component for the cell, water vapor does not influence the cell operation unless the water is nearly depleted. However, high oxygen concentration favors the discharge reaction at the cathode.

수평관 내 물-공기 이상류 거동에 관한 실험적 연구 (An Experimental Investigation on the Behavior of Water-Air Two-phase Flows in a Horizontal Pipe)

  • 조한일;이경수;류시완
    • 한국안전학회지
    • /
    • 제32권1호
    • /
    • pp.75-81
    • /
    • 2017
  • A series of laboratory experiments has been performed in order to investigate the behavior of water-air two-phase flow in a horizontal pipe. A conductivity meter has been applied to detect the irregular alternation of air at the specific points in flows. The experimental condition has been established according to the water and air flowrates. Passing time, which is the time length for a measuring probe to pass through the entire length of a specific bubble, has been defined to evaluate the size of bubbles in the flow. Passing length, which can be considered as the equivalent value to bubble size and determined from the product of passing time and cross-sectional averaged velocity, and its corresponding occurrence frequency have been analyzed to classify the air flow patterns according to the condition of air and water fluxes. From the result, the dependancy of flow patterns on the variation of air-water flux ratio has been investigated and the existence of thresholds also checked for classifying the behavior of air in the flow.

복합형 태양열 가열기의 일일 운전 특성 및 축열 성능에 관한 연구 (A Study on Thermal Storage Performance and Characteristics of Daily Operation of a Hybrid Solar Air-Water Heater)

  • 최휘웅;파쿠르 로커만;윤정인;손창효;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제35권3호
    • /
    • pp.73-79
    • /
    • 2015
  • In this study, a thermal storage performance and characteristics of daily operation were investigated when the air and the liquid were heated simultaneously by a hybrid solar air-water heater that can make hot water as well as heated air. The hybrid solar air-water heater is kind of a flat plate solar collector that can make hot water and heated air by installing air channel beneath absorber plate of traditional flat plate solar collector for hot water. As a result of daily operation, maximum water temperature reached in a thermal storage was shown $44^{\circ}C$ on 73kg/h of air mass flow rate and about $40^{\circ}C$ on 176kg/h of air mass flow rate. Thus, the necessity of heating water in thermal storage by operating only liquid side was confirmed when the temperature of liquid in thermal storage is lower than we need. In case of efficiency investigated on daily operation, the thermal efficiency of the liquid side was decreased with increment of the inlet liquid temperature and decrement of the solar radiation, but efficiency of the air side was increased with increment of inlet liquid temperature difference as the traditional solar air heater. Total thermal efficiency of the collector was shown from 65.85% to 78.23% and it was decreased with increment of the inlet liquid temperature and decrement of solar radiation same as the traditional system.