• Title/Summary/Keyword: Air tank

Search Result 607, Processing Time 0.028 seconds

Performance Enhancement of Solar Thermal Storage Tank with Heat Exchange Coils (Part 2 : Simulation) (열교환코일 내장형 태양열 축열조의 성능향상 (제2보 시뮬레이션))

  • Kim, Jong-Hyun;Li, LongJie;Lee, Uk-Jae;Hong, Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.9
    • /
    • pp.361-366
    • /
    • 2016
  • As an alternative of well-mixed storage tank with lower coil only, we have proposed a tank with lower and upper coils and verified a superior thermal stratification in a tank, which results in increased collector efficiency and solar fraction. But the phenomenon of temperature reversal was often experimentally observed in the tank, so a revised control was successfully applied which is to heat only lower coil using three way valve if temperature reversal occurs and to operate the collector with low flow rate when the condition of solar radiation is not good. In the present study, using TRNSYS we compared the existing lower heating and the proposed lower and upper heating with a control preventing temperature reversal. The results showed that the proposed method has an increase of collector efficiency by 5.1% and solar fraction by 3.2%.

A Numerical Analysis of Transonic Flows in an Axisymmetric Main Nozzle of Air-Jet Loom (에어제트직기 주 노즐내 천음속 유동의 수치 해석적 연구)

  • Oh T. H.;Kim S. D.;Song D. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.168-173
    • /
    • 1998
  • A numerical analysis of axisymetric backward facing step main nozzle flow in air jet loom has been accomplished. To obtain basic design data for an optimum main nozzle for an air-jet loom and to predict the transonic/supersonic flow, a characteristic based upwind flux difference splitting compressible Navier-Stokes method has been used. The wall static pressure of the main nozzle and the flow velocity changes in the nozzle tube were analyzed by changing air tank pressures and acceleration tube lengths. The flow inside the nozzle experiences double choking one at the needle tip and the other at the acceleration tube exit at tank pressures over $4kg_f/cm^2$. The tank pressure $P_t$ leading to the critical condition depends on the acceleration tube length; i.e, $P_t$ is higher for longer acceleration tubes. The $P_t$ value required to bring the acceleration tube exit to the critical condition is nearly constant regardless of acceleration tube length. The round needle tip shape might lead to less total pressure loss when compared with step shape.

  • PDF

Analysis of Ejection System of Projectile with Compressed Air (압축공기를 이용한 발사체 방출시스템 해석)

  • Kwon, Yong-Hun;Kim, Jun-Bum;Park, Warn-Gyu;Han, Myung-Chul;Ahn, Jae-Yul;Jung, Chan-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1488-1493
    • /
    • 2004
  • The purpose of the present work is to develop a compressed air discharging system to eject a projectile from the underwater. For the flow analysis of compressed air tank, projectile ejection tube, and pipe system, the air is assumed as an ideal gas, undergoing 1-dimensional axisymmetric, compressible flow, the Fanno flow analysis was applied. The commercial Fluent code was used to solve 3-D Navier-Stokes equation of the internal flow within the valve. The dynamics of the projectile within the ejection tube was assumed 1-degree of freedom. The calculations were performed to four cases of valve opening area ratio, i.e., 25%, 50%, 75%, and 100% opening area, at both depths of 10m and 50m. The results were shown as the figures of time variation of pressure of the compressed air tank and projectile ejection tube. The velocity and distance of the projectile were also predicted.

  • PDF

Fuzzy algorithm of Automatic control for dissolved oxygen in Activated sludge aeration tank (활성슬러지 폐수처리장 폭기조 DO제어를 위한 퍼지 제어 알고리즘 연구)

  • 손건태;김성덕;고주형
    • Journal of Environmental Science International
    • /
    • v.8 no.4
    • /
    • pp.533-538
    • /
    • 1999
  • Fuzzy algorithm of automatic control for dissolved oxygen(DO) concentration in the aeration tank of an activated sludge process is proposed. Among variables repirometry and air flowrate are selected as significant input factors and the relationship with DO is estimated using a multiple regression model. The DO concentration and the amount of repirometry are fuzzified and the fuzzy rule base are determined. Using the fuzzy algorithm, the change of amount of air flowrate are determined and the change of amount of DO is derived.

  • PDF

Effect of Aeration Mechanism on Livestock Manure Liquid Fertilization (폭기형태가 돈분뇨 액비 부숙특성에 미치는 영향)

  • Jeong, Kwang-Hwa;Khan, Modabber Ahmed;Kim, Chang-Hyun;Lee, Dong-Hyun;Choi, Dong-Yoon;Yu, Yong-Hee
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.703-713
    • /
    • 2012
  • Three types of aeration system were installed in experimental liquid fertilization tanks to investigate the change of characteristics of pig slurry used as a raw material for making livestock liquid fertilizer. The aeration systems of the reaction tanks were composed of three major part: the air suppling part (blower), the air pipe part, and the air diffuser part. In the first tank (reactor A), the air was supplied from the bottom of the reaction tank through air pipe system connecting air diffuser with commercial ordinary blower. In the second tank (reactor B), the air diffuser was located 10cm above the bottom of the reactor. In the third tank (reactor C), the pure air was supplied with circulating pjg slurry. The oxygen content of pure air was about 90%. The pure air was mixed with pig slurry by mechanically in the air suppling part (blower) and the air pipe part. The agitation effect was highest in the reactor C than other reactors. The contents of SS, COD, T-N and T-P of each samples collected at middle part of all reactors were 8,500, 4,188, 694 and 422mg/L; 9,000, 4,247, 813 and 356mg/L; 8,667, 6,910, 973 and 269mg/L, respectively.

A Study on the Noise Reduction of Reciprocating Type Air Compressors

  • Lee Kwang-Kil;Kim Kwang-Jong;Lee Gwan-Hyung;Park Jae-Suk;Son Doo-ik;Kim Bong-Ki;Lee Dong-Ju
    • International Journal of Safety
    • /
    • v.3 no.1
    • /
    • pp.6-9
    • /
    • 2004
  • This paper deals with the noise evaluation technique of a reciprocating air-compressor and its noise reduction. The reciprocating air-compressors are widely used in the small, medium sized industrial firms, and lots of their employees are affected and irritated by their noise in the workplace. Thus, noise control actions should be taken appropriately by considering the hearing loss due to the occupational noise exposure. Lead-wrapping techniques are employed to identify the contribution of principal noise sources which are generally known as motor, belts, suction/discharge valves, moving pistons, and flow-induced noise caused by edges or discontinuities along the flow path e.g. expansions, contractions, junctions and bends etc .. As a result, main noise sources of the air-compressor can be categorized by the suction/discharge noise, valve noise, and compressed-air tank noise. Based on the investigations, mufflers are designed to reduce both the suction/discharge noise and the compressed-air tank noise. Instead of the conventional valve plate, polyethylene resin is used as a new one for the reduction of valve impact noise. In addition, attempts are made to reduce the valve noise propagation to the cylinder head and the compressor tank by using the insulation casings. As a result of the countermeasure plans, it can be achieved that the noise reduction of the air-compress is up to 10dB.

Characteristics of sloshing load and flow inside a tank with cylinder structures (실린더 구조물을 설치한 탱크 내부의 슬로싱 하중과 유동 특성)

  • Ki Jong Kim;Hyun-Duk Seo;Daegyoum Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2023
  • Sloshing of the fluid having a free surface produces an impact force on a tank wall subjected to external excitation. This paper investigates the effect of cylindrical structures in a rectangular sloshing tank under translational harmonic excitations. By varying the number of installed cylinders in the tank, the characteristics of the free-surface deformation is experimentally observed, and the peak pressure on the tank wall is extracted by threshold values. To predict the peak pressure, the numerical simulation is also conducted using smoothed particle hydrodynamics (SPH), and the peak values are compared with the experimental results. Furthermore, pressure and velocity fields in the tank and free-surface shape are analyzed at the moment of impact.

Removal of Benzene-Nonaqueous Phase liquid(NAPL) in Soil Tank by NAPL Swelling and Non-swelling alcohols (토양 탱크에서 흡수 알코올과 비흡수 알코올을 이용한 벤젠-비수용상액체 제거 연구)

  • Song, Chung-Hyun;Jeong, Seung-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.40-47
    • /
    • 2009
  • Coinjection of alcohol and air or alcohol flooding only were evaluated with 3-D soil tank for removal of nonaqueous phase liquid (NAPL) contaminant from soil. 70%-ethanol and 40%-isopropanol were used for non-NAPL-swelling alcohol and NAPL-swelling alcohol, respectively. 729 ml-benzene was placed in the 37 liter soil tank. Alcohols were respectively injected from the injection well placed near the bottom of the tank and mobilized free phase NAPL and aqueous phases were then recovered from the extraction well placed in the upper part of the soil tank. Approximately 50% of removed NAPLs were free-phase in all experiments. The results were completely different to the previous soil column experiment results and also implied that alcohol properties did not affect the NAPL removal efficiency in the 3-D soil tank experiment. Air was also co-injected with alcohol to evaluate co-injection effects on NAPL removal. Enhanced NAPL removal effect of co-injection of 70%-ethanol and air was also found even in the 3-D soil tank evaluation. However, co-injection effect of 40%-iso-propanol and air was less apparent. This study determined that the most important parameter governing alcohol flooding for NAPL removal would be extraction capacity to recover NAPL and aqueous phase flowing in the soil. More researches are required for improving recovery efficiency of extraction well in real soil contamination conditions.

Study on Deriving the Buckling Knockdown Factor of a Common Bulkhead Propellant Tank (공통격벽 추진제 탱크 구조의 좌굴 Knockdown Factor 도출 연구)

  • Lee, Sook;Son, Taek-joon;Choi, Sang-Min;Bae, Jin-Hyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.10-21
    • /
    • 2022
  • The propellant tank, which is a space launch vehicle structure, must have structural integrity as various static and dynamic loads are applied during ground transportation, launch standby, take-off and flight processes. Because of these characteristics, the propellant tank cylinder, the structural object of this study, has a thin thickness, so buckling due to compressive load is considered important in the cylinder design. However, the existing buckling design standards such as NASA and Europe are fairly conservative and do not reflect the latest design and manufacturing technologies. In this study, nonlinear buckling analysis is performed using various analysis models that reflect initial defects, and a method for establishing new buckling design standards for cylinder structures is presented. In conclusion, it was confirmed that an effective lightweight design of the cylinder structure for common bulkhead propulsion tank could be realized.

Analysis of Thermal and Flow Characteristic in Ice Storage Tank (빙축열조 내부의 열적유동 특성 해석)

  • Kim, Y.I.;Hong, H.K.;Bai, C.H.;Kim, Y.I.;Yoon, H.S.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.369-376
    • /
    • 1988
  • Among several methods to solve the unbalanced electric power load, the Ice Storage System (ISS) for the air conditioning is relatively easy to realize and gives big effect on balancing the electric power load. The goals of this study are to develop the practical ISS for the air conditioning through the design, manufacturing and performance test of the experimental ISS (size $0.335m^3$, cold storage capacity 14200 kcal, IPF 0.4). Thermal fluid motion inside the ice storage tank during cooling storage and cooling release are studied. The data are analyzed by the dispersion analysis and optimal design conditions are derived from the result.

  • PDF