• Title/Summary/Keyword: Air stream

Search Result 494, Processing Time 0.026 seconds

Effect of Oxygen Enriched Air on the Combustion Characteristics in a Coaxial Non-Premixed Jet (II) - Flame Structure and Temperature Distribution - (산소부화공기가 동축 비예혼합 제트의 연소특성에 미치는 영향 (II) - 화염의 구조와 온도분포 -)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Jang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.223-229
    • /
    • 2004
  • Combustion using oxygen enriched air is known as a technology which can increase thermal efficiency due to increase of the flame temperature. Flame shapes, schlieren photos, OH radical chemiluminescence and local flame temperature were examined as a function of OEC(Oxygen Enriched Concentration) in a coaxial non-premixed jet. With increase of OEC, flame length and width decreased, but its brightness increased significantly, and the size of vortices in the flame also increased. Especially, the reaction around the flame surface became active. The strong OH intensity appeared to be made and moved from middle stream to upper one with increase of OEC, which shows combustion reaction in the upper stream becomes more dominant In addition, the temperature distributions of the flames showed similar tendency with OH radical intensities. A flame with high temperature and strong stability was obtained with increasing OEC of the coflow.

A Numerical Analysis on the Outside Pressure Distribution by Outdoor Wind Effect in a High-rise Residential Building (수치해석을 이용한 초고층 주거건물에서 외풍영향에 의한 외벽 압력 분포 분석)

  • Kim, Chi-Wan;Yang, Soon-Chang;Ahn, Young-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.10
    • /
    • pp.639-645
    • /
    • 2011
  • The object of this study is to analyze and evaluate outdoor wind pressure effect in a high-rise residential building when seasonal wind blow on coast area. The target building consists of 3 tower buildings over 250m in height. For the evaluation of the outdoor wind effect, CFD simulation was performed. The results of the simulations are as follows : 1) In that case of high-rise building, horizontal stream is more affected than vertical stream. 2) In case of summer season northeasterly wind, building pressure distributions are unstable and surface pressures of outside are effected respectively. 3) In case of winter season westerly wind, building preassure differentiations are not so much because of screening effects of the B, and the C buildings. 4) In case of winter season northwesterly wind, front wind affects on the A building directly because of no obstacles.

Characteristics of the Ice Slurry Transportation System for District Cooling Depending on the Transportation Lines (지역냉방용 아이스슬러리 수송시스템의 배관방식에 따른 특성)

  • Lee Yoon-Pyo;Chung Jae-Dong;Yoon Seok-Mann
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.571-577
    • /
    • 2006
  • The characteristics of ice packing factor (IPF) at the ice slurry system using one line type are compared with the system using two lines type. The installation space for one transporting line is saved at the one line system. For the one line type, the ice packing factor is reduced along the downstream, but for the two lines type, the ice packing factor is fixed. For the one line system, mass flow rate in the main line is fixed along the down-stream, but for two lines system, the mass flow rate in the main line is reduced along the downstream. For one line system, along the down stream after IPF=0, the temperature at the main steam is increased, and the extracted mass flow is increased. The initial IPF, at which the IPF is not arrived at zero upto the final node, is proposed for the B area.

Characteristics of Bubble-driven Flow by Using Time-resolved PIV and POD Technique (Time-resolved PIV와 POD기법을 이용한 단일노즐 버블링 유동 특성에 관한 연구)

  • Yi, Seung-Jae;Kim, Jong-Wook;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • In this paper, the recirculation flow motion and mixing characteristics driven by air bubble stream in a rectangular water tank is studied. The time-resolved PIV technique is adopted for the quantitative visualization and analysis. 488 nm Ar-ion CW laser is used for illumination and orange fluorescent ($\lambda_{ex}=540nm,\;\lambda_{em}=560nm$) particle images are acquired by a PCO 10bit high-speed CCD camera (1280$\times$1024). To obtain clean particle images, 545 nm long pass optical filter and an image intensifier are employed and the flow rates of compressed air is 3 l/min at 0.5 MPa. The recirculation and mixing flow field is further investigated by time-resolved POD analysis technique. It is observed that the large scale recirculation resulting from the interaction between rising bubble stream and side wall is the most dominant flow structure and there are small scale vortex structures moving along with large scale recirculation flow. It is also verified that the sum of 20 modes of velocity field has about 67.4% of total turbulent energy.

Evaluation of the Use of Inertial Navigation Systems to Improve the Accuracy of Object Navigation

  • Iasechko, Maksym;Shelukhin, Oleksandr;Maranov, Alexandr;Lukianenko, Serhii;Basarab, Oleksandr;Hutchenko, Oleh
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.71-75
    • /
    • 2021
  • The article discusses the dead reckoning of the traveled path based on the analysis of the video data stream coming from the optoelectronic surveillance devices; the use of relief data makes it possible to partially compensate for the shortcomings of the first method. Using the overlap of the photo-video data stream, the terrain is restored. Comparison with a digital terrain model allows the location of the aircraft to be determined; the use of digital images of the terrain also allows you to determine the coordinates of the location and orientation by comparing the current view information. This method provides high accuracy in determining the absolute coordinates even in the absence of relief. It also allows you to find the absolute position of the camera, even when its approximate coordinates are not known at all.

Tailings Behavior and Performance of the Tailings Return Unit of the Head-feed Combine(II) -Theoretical and Experimental Analysis of Tailing Behavior- (자탈형(自脫型) 콤바인 환원장치(還元裝置)의 환원물(還元物) 유동현상(流動現象)과 환원성능(還元性能) 개선(改善)에 관한 연구(硏究)(II) -환원물(還元物) 유동(流動)의 이론해석(理論解析)과 실험분석(實驗分析)-)

  • Cho, Y.K.;Chung, C.J.;Choi, K.H.;Park, P.K.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.2
    • /
    • pp.133-141
    • /
    • 1991
  • This study was undertaken to investigate the structural and configurational characteristics of the tailings return-unit in the commercially available head-feed combines and to study the aero-dynamical behavior of the tailings in the units. The mathematical model of the motion of tailings in the thrower casing was developed and the simulated trajectories for different type of units was analyzed to compare with the measured ones. The air-stream velocity profile in various locations along the tailings returning duct was measured to find the effect of configurational characteristics and blade tip speed. The results of the study are summerized as follows. 1. The ejecting angle, which is the angle between the direction of the particle velocity ejecting from the blade and the horizontal axis, was found to be about $66^{\circ}$ in both the simulation and experiment. The angle was much greater than the setting angle of actual duct of the combines studied, which were $48{\sim}56^{\circ}$. By comparison of these results, it was suggested to change duct setting angle so as to reduce the frictional force, between the duct wall and tailings, by reducing the difference between the ejecting and setting angles. 2. The velocity of the air stream in the duct was in general higher in the upper bound of the duct compared to the lower and decreased as the stream went toward the end of duct. The comparison of the tailings units among the combines studied showed a superior performance with the tapered duct having small diameter in the outlet and with greater number of thrower blade.

  • PDF

An Experimental Study on Flame Spread in One-Dimensional Droplet Array with Forced Convection (강제 대류하에서 일차원 액적 배열내의 화염 퍼짐에 관한 실험적 연구)

  • Park, Jeong;Lee, Kiman;Niioka, Takashi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.68-74
    • /
    • 2000
  • Experimental investigation on flame spread along suspended droplet arrays have been conducted with various droplet spacings and ambient air velocities. Especially, an opposed air stream is introduced to simulate fundamental flame spread behaviors in spray combustion. High-speed chemiluminescence imaging technique of OH radicals has been adopted to measure flame spread rates and to observe various flame spread behaviors. The fuel used is n-Decane and the air velocity varies from 0 to 17cm/s. The pattern of flame spread is grouped into two: a continuous mode and an intermittent one. It is found that there exists droplet spcings, above which flame spread does not occur. The increase of ambient air velocity causes the limit droplet spacing of flame spread to become small due to the increase of apparent flame stretch. As the ambient air velocity decreases, flame spread rate increases and then decreases after taking a maximum flame spread rate. This suggests that there exists a moderate air flowing to give a maximum flame spread rate due to enhanced chemical reaction by the increase of oxidizer concentration.

Effects of the Air Spoiler on the Wake Behind a Road Vehicle by PIV Measurements (자동차 후류에서 에어스포일러의 영향에 대한 PIV 측정)

  • Kim, Jin-Seok;Sung, Jae-Yong;Kim, Jeong-Soo;Choi, Jong-Wook;Kim, Sung-Cho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.136-143
    • /
    • 2006
  • A particle image velocimetry (PlV) technique has been applied to measure the quantitative flow field characteristics behind a road vehicle with/without an air spoiler attached on its trunk and to estimate its effect on the wake. A vehicle model scaled in the ratio of 1/43 is set up in the mid-section of a closed-loop water tunnel. The Reynolds number based on the vehicle length is $10^5$. To investigate the three-dimensional structure of the recirculation zone and vortices, measurements are carried out on the planes both parallel and perpendicular to the free stream, respectively. The results show significant differences in the recirculation region and the vorticity distributions according to the existence of the air spoiler. The focus and the saddle point, appearing just behind the air spoiler, are disposed differently along the spanwise direction. Regarding the streamwise vortices, the air spoiler produces large wing tip vortices. They have opposite rotational directions to C-pillar vortices which are commonly observed in case that the air spoiler is absent. The wing tip vortices generate the down-force and as a result, they can make the vehicle more stable in driving.

Air Flow Analysis due to the Configuration of Car Body Radiator Grill (차체 라디에이터그릴의 형상에 따른 공기 유동해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.21-27
    • /
    • 2013
  • This study is investigated on flow analysis according to grill configuration of radiator. The stream of flow which pass through radiator grill in car body and the contour of pressure distribution are estimated by the basis. As the magnitude of resistance force which flow affects the car body is investigated so that the power reduction can be reduced. As the pressure inside radiator grill is assessed, more efficiency can be investigated in order that the flow rate inside car body can be increased. Model 2 has the most air resistance and model 1 has the least among model 1, 2 and 3. Model 1 has the most air flow rate at inside. There are model 3 and 2 simulated according to flow rate. As the curved surface at radiator grill configuration increases in number, air flow rate becomes distributed uniformly. By considering the effect on air resistance and air flow rate at radiator grill, model 3 becomes the most effective configuration.

우리나라에서의 증발식 냉각의 효용성

  • Min, Man-Gi
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.3 no.3
    • /
    • pp.199-208
    • /
    • 1974
  • The effectiveness with which evaporative cooling can be used in Korea was analysed by making use of weather data of 15cities in a past decade. In ASHRAE comfort chart for a still air atmospheric condition was divided into two dimensional array, 14 zones by effective temperature and 10 zones by relative humidity, and all hours of weather condition in those zones were. computed from every 4 hours weather data in a past decade. From this computation obtained were for 15 cities : 1. average annual total hours above $23^{\circ}C$ ET 2. effective temperatures with $5\%$ excess factor, and 3. ratios of all hours in wet (above $25.6^{\circ}C$ WBT), intermediate $(22^{\circ}C\;to\;25.6^{\circ}C\;WBT)$, and dry $(below\;22^{\circ}C\;WBT)$ area to total hours in whole area on comfort chart beyond $23^{\circ}C$ ET to effective temperature of $5\%$ excess factor. It was shown from this computational result that in Korea evaporative cooling was not effective for building and residential comfort air conditioning but could be useful for comfort air conditioning in industry and industrial air conditioning, depending upon the air stream velocity and the type of application.

  • PDF