• Title/Summary/Keyword: Air stagnation

Search Result 149, Processing Time 0.023 seconds

An Analysis of Wind Field According to the Prevailing Wind Directions for Understanding of Ventilation Passages in an Apartment Complex (아파트단지 환기경로 파악을 위한 주풍향별 바람장 분석)

  • Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.467-477
    • /
    • 2007
  • A numerical study with Envi-met model is experimented to investigate the characteristics of wind pattern in apartment complex. In all case, most conditions such as wind speed, temperature, and surface features are considered as the same, but wind direction is the only different factor. The wind directions considered in this study have a meaning of prevailing wind direction. When the prevailing wind with the direction of $170^{\circ}$ blows into the complex, the ventilation passage toward the outside of complex is formed and the stagnation of air is not expressed. In case of having the direction of $300^{\circ}$, most evident ventilation passages are composed. When the inflow wind direction is the northeast, $30^{\circ}$, there is some possibility of stagnation phenomenon. This is because the arrangement of buildings makes a right angle with the inflow wind direction.

Large Eddy Simulation of Non-reacting Flow in Bluff-body Combustor (Bluff-body 연소기의 비반응 유동에 대한 대 와동 모사)

  • Kong, Min-Seog;Hwang, Cheol-Hong;Lee, Chang-Eon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.250-257
    • /
    • 2005
  • Large eddy simulation{LES) methodology used to model a bluff-body stabilized non-reacting flow. The LES solver was implemented on parallel computer consisting 16 processors. To verify the capability of LES code, the results was compared with that of Reynolds Averaged Navier-Stokes(RANS) using $k-{\epsilon}$ model as well as experimental data. The results showed that the LES and RANS qualitatively well predicted the experimental results, such as mean axial, radial velocities and turbulent kinetic energy. However, in the quantitative analysis, the LES showed a better prediction performance than RANS. Specially, the LES well described characteristics of the recirculation zones, such as air stagnation point and jet stagnation point. Finally, the unsteady phenomena on the Bluff-body, such as the transition of recirculation region and vorticity, was examined with LES methodology.

  • PDF

Experimental Investigation on Key Parameters in Air-powered Needle-free Injection System for Skin Treatment (피부 치료를 위한 공압식 무침 주사 시스템의 주요 인자에 관한 실험적 연구)

  • Kim, Jung Kyung;Mohizin, Abdul;Lee, Seung Ku
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.42-47
    • /
    • 2018
  • A needle-free injector is one of the new non-invasive players in impregnating the biological barriers. It is considered as the next phase in drug delivery and therapeutic applications. One of the major fields of application is in skin remodeling procedures. Although many studies were carried out in understanding the principle in the needle-free injection procedure, fewer studies were done with the aim of therapeutic applications. In the present study, we tried to identify key parameters that affect the jet divergence and peak stagnation pressure on the skin surface in a conventional needle-free injector for skin treatment. A summary of the working principle and effect of the key parameters are presented.

A Numerical Study for the Design of Ventilation System for the gaseous Pollutants (기체 유해물질 환기장치 설계를 위한 수치모사)

  • 엄태인
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.4
    • /
    • pp.77-84
    • /
    • 1994
  • A study is performed in order to design a effective ventilation equipment for the pollutants in workshop. The procedure has been used to calculate the flow in a confined rectangular space channel. A cross free stream is flowed from open space and jet stream including pollutants is injected from bottom area. Calculation results shows a wake region which exists immediarely downstream of the jet discharge and are compared with the experimental data. Calculation data are in good agreement with experimental results. A wake plays an important role on a stagnation of the pollutants. Thus ventilation equipment has to be designed without a stagnation region which give rise to concentration stratification. In this study, calculation parameters are the position and velocity of pollutants and fresh air from cross free stream. It is concluded that more measurements of local velocities, temperatures and concentrations of the pollutants.

  • PDF

Heat Transfer Characteristics in Impinging Air Jet with Hybrid Rod (하이브리드 로드를 갖는 충돌공기제트의 열전달특성에 관한 연구)

  • 표창기;박상록;김동춘;금성민;임장순
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.277-283
    • /
    • 2000
  • The heat transfer characteristics for air jet vertically impinging on a flat plate which had a set of hybrid rod were investigated experimentally. The rod had a cross section made with a half of circular cross section and that of rectangular and was installed in front of the plate. The heating surface was given constant heat flux value of 1020 W/$m^2^{\circ]C$ and the problem parameters investigated were jet Reynolds number, nozzle-to-plate spacing and the rod size. The local and local average Nusselt number characteristics were found to be dependent on the rod size because the flow was disturbed by installing the rod. Higher convective heat transfer rate occurred in the whole plate as well as in the stagnation region.

  • PDF

A Numerical Analysis on the Natural Convect ion of the Square Channel inner from the Horizontal Plate with Protruding Heat Source (사각 채널 내에서 열원이 부착된 수평 평판에서 자연대류의 수치해석)

  • Kim Byung-Chul;Ju Dong-IN
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.487-490
    • /
    • 2002
  • The real chip and similarity model were used to investigate the thermal behavior and velocity distribution of air from the heat source with the location and the amount of heat experimentally and numerically, and compared. The heat generated in the block is not cooled by convection and show the high temperature by the stagnation of heat flow. After maintaining the high temperature of block by the natural convection, the sudden drop of temperature with the air flow was shown in the channel but the decreasing rate was small with the time. The inward block was effected by infinitesimal air flow generated between block and channel and outward block was effected by the entry condition.

  • PDF

A Numerical Simulation of Heat Flow Field for Heat Island Effect Analysis to Air Pollutants Dispersion in Apartment Complex (아파트 단지내의 열섬효과가 대기오염물질 확산에 미치는 영향 해석을 위한 열유동장 수치모의)

  • Jang Eun-Suk
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.577-582
    • /
    • 2005
  • Enormous apartment complexes in urban areas, temporary inversion state and heat island effect occur due to the strong sunshine and weak wind speeds which hinders the dispersion of air pollutants that are emitted from neighboring areas of apartment complexes. In this study, analysis were conducted by using the Fluent code based on the CFD(Computation Fluid Dynamics), including building layout, material, building height from the ground surface, the heat, analysis of flow field in the apartment complex. It was estimated that the temporal radiation inversion phenomenon during the daytime, which was caused by the weak wind speed and higher temperatures in the upper level, contributed to the stagnation of the air pollutants in the lower layer of the apartment complex.

Mixing Characteristics of Various Cavity Shapes in SCRamjet Engine (스크램제트 엔진 내부 Cavity 형상 변화에 따른 혼합 성능 특성)

  • Oh, Ju-Young;Seo, Hyung-Seok;Byun, Yung-Hwan;Lee, Jae-Woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.57-63
    • /
    • 2008
  • In combustor of SCRamjet of air-breathing engine type, the flow duration time is very short because of the supersonic air flow. In this short duration, the whole process of combustion should be done, so it is very important to study supersonic combustion technologies. In this study, we focus fuel-air mixing enhancement method using cavity and conducted 3-dimensional Navier-Stokes computational analysis. Cavity height is fixed by 10mm, length is changed from 0 to 40mm. There is a supersonic jet injection downstream of the cavity and the hole size is 1mm. As a result, the higher ratio of cavity length/height is, the higher value of vorticity gets. The increased area of vorticity expands to upper and sidewise combustor. However, the stagnation pressure loss which generates thrust loss becomes higher when the vorticity is higher. Considering these result, we can conclude that optimized design which considers the highest mixing performance and the least stagnation pressure loss is needed.

Preliminary Performance Assessment of a Fuel-Cell Powered Hypersonic Airbreathing Magjet

  • Bernard Parent;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.703-712
    • /
    • 2004
  • A variant of the magnetoplasma jet engine (magjet) is here proposed for airbreathing flight in the hypersonic regime. As shown in Figure 1, the engine consists of two distinct ducts: the high-speed duct, in which power is added electromagnetically to the incoming air by a momentum addition device, and the fuel cell duct in which the flow stagnation temperature is reduced by extracting energy through the use of a magnetoplas-madynamic (MPD) generator. The power generated is then used to accelerate the flow exiting the fuel cells with a fraction bypassed to the high-speed duct. The analysis is performed using a quasi one-dimensional model neglecting the Hall and ion slip effects, and fix-ing the fuel cell efficiency to 0.6. Results obtained show that the specific impulse of the magjet is at least equal to and up to 3 times the one of a turbojet, ram-jet, or scramjet in their respective flight Mach number range. Should the air stagnation temperature in the fuel cell compartment not exceed 5 times the incoming air static temperature, the maximal flight Mach number possible would vary between 6.5 and 15 for a magnitude of the ratio between the Joule heating and the work interaction in the MPD generator varied between 0.25 and 0.01, respectively. Increasing the mass flow rate ratio between the high speed and fuel cell ducts from 0.2 to 20 increases the engine efficiency by as much as 3 times in the lower supersonic range, while resulting in a less than 10% increase for a flight Mach number exceeding 8.

  • PDF

Urban Climate Mapping - The Case of Sanggye 4-Dong - (도시기후지도의 작성 -상계 4동을 중심으로-)

  • 송영배
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.6
    • /
    • pp.27-36
    • /
    • 2002
  • The objective of this study is to improve the quality of the atmospheric environment by incorporating the factors of meteorology and urban climate into the field of urban and environmental planning. To this end, we have conducted a study on CLIMATOP and the mapping of urban climate, which are basic data used to analyze changes in climatic factors and the stagnation and accumulation of air pollutants. In particular, we focused on understanding the formation and movement of cold fresh air and its influx into urban areas by measuring and analyzing climatic factors. As a study result, classification criteria far CLIMATOP and a urban climatic map were made. In addition, we analyzed a digital elevation model, climatic data, and isothermal curves. As a result, we identified the corridor through which cold fresh air moves. We also observed that the temperature of the fluxed cold fresh air increased as land use changed. When the results of this study are applied to urban re-development and re-building projects, which require preliminary environmental assessment and environmental impact assessment, the practice proposed by this study is expected to contribute to the natural purification of air pollution activating the movement of cold fresh air and its influx into urban areas.