• Title/Summary/Keyword: Air stagnation

Search Result 149, Processing Time 0.025 seconds

A Computational Investigation on Airflow Structures Inside a Ball Bearing at High-Speed Rotation (고속 회전하는 볼베어링 내 공기 유동구조 수치해석 연구)

  • Kim, Dong-Joo;Oh, Il-Suk;Hong, Seong-Wook;Kim, Kyoung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.745-750
    • /
    • 2011
  • In a hope to better understand the flow and convective heat transfer characteristics inside a ball bearing, air flow between the rolling elements and raceways at high speed bearing rotation is numerically investigated using a simplified inner geometry of bearing and a CFD technique. Flow simulation results reveal the pressure distribution of airflow and the shear stress distribution on the ball surface, of which nonuniformity becomes significant with the increasing rotational speed. Also, the local point of maximum shear stress coincides with the stagnation flow area on the surface of rolling elements. A complex pattern of three-dimensional vortex structures is found in the air flow due to the relative motion of bearing elements and three different types of vortex pairs exist around the rotating and orbiting rolling elements.

Study on Film Boiling Heat Transfer of Spray Cooling in Air-Water Full Cone Spray System (물-공기 원추형 분무시스템에 있어서 분무냉각 막비등 열전달에 관한 연구)

  • Kim, Yeung-Chan;Yun, Seung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1236-1242
    • /
    • 2006
  • The local heat flux of spray cooling in the film boiling region were experimentally investigated for the spray region of $D_{max}$ = $0.005{\sim}0.03m^3/(m^2s)$. A twin-fluid full cone spray nozzle was employed for the experiment and the distributions of droplet flow rates were obtained for air-water full cone sprays. A stainless steel block was cooled down from initial temperature of about $800^{\circ}C$ by full cone spray. In the region near the stagnation point, it was found that the experimental data are in good agreement with the results predicted from the correlations between the local heat transfer and the local droplet flow rate proposed in the previous report. However, it was found that the experimental data of $D_r$ > $0.01m^3/(m^2s)$ are a little smaller than the results predicted from the correlations.

An experimental study for cold end orifice of vortex tube (Vortex Tube의 냉출구 Orifice에 관한 실험적 연구)

  • Yu, Gap-Jong;Choe, Byeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1061-1073
    • /
    • 1996
  • Vortex tube is a simple device which splits a compressed gas stream into a cold stream and a hot stream without any chemical reactions. The phenomena of energy separation taking place in a vortex tube has been investigated experimentally. Recently, vortex tube is widely used to local cooler of industrial equipments and air conditioner of special purpose. In this study, experimental study on vortex tube efficiency was performed with various cold end orifices and nozzles type. The experimental results indicate that there is an optimum diameter of cold end orifice and nozzle type for the best cooling performance. The variation of the maximum wall temperature along the vortex tube surface provides useful information about the location of the stagnation point of the flow field at the axis of the vortex tube. The similarity relation for the prediction of the temperature of the cold exit air was obtained.

Study on the Internal Flow of an Electric Oven with Variation of Steam Outlet Position (전기오븐의 스팀 출구위치에 따른 내부유동에 대한 연구)

  • Park, Young Hun;Kim, Yu Jin;Jung, Young Man;Park, Warn-Gyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.450-456
    • /
    • 2013
  • The composite electric oven is one of the fixing utensil, various functions are required. Steam generating function, which is one of its functions, and allows various food cooking. The location of the outlet of the steam generator is designed around ease of installation, consideration of internal fluid is not. Distribution of the steam can not be non-uniformly. Accordingly, cooking time becomes longer, the energy consumption increases. As a result of the analysis, it was confirmed stagnation phenomenon of the internal flow through the interpretation of the calculations for the position of the outlet of the steam generator existing. Further, by computing the analysis of various locations of the outlet of the steam generator, we investigated the distribution and characteristics of the internal flow.

Chemical Interaction in Downstream Flows of SNG/Air Symmetric Premixed Counterflow Flame (SNG/Air 예혼합 대향류 대칭화염의 후류 유동장에서 화학적 상호작용)

  • KANG, YEONSE;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.668-679
    • /
    • 2018
  • Experimental and numerical data were compared through a counterflow burner for the characteristic of basic flame about SNG- C11. In order to use the numerical mechanism accurately, the validation was carried out at strain rate ($a_g=30$, $120s^{-1}$) and the UCSD model showed satisfactory results. The effective Lewis number of the extinction boundary, and the behavior of extinction for the symmetric flames of the SNG-C11, could be explained through the trend of $Le_V$, and the flame of the extinction condition was inspected by the major species, key radicals and the chemical reaction paths. The interactions phenomenon in the merged flames has chemical reaction path for producing $HO_2$ were generated at stagnation point. It can be expected the one of major factors in interaction phenomenon.

A Numerical Study of the Effect of Non-equilibrium Condensation on the Oscillation of Shock Wave in a Transonic Airfoil Flow (비평형 응축이 충격파 진동에 미치는 영향에 관한 수치 해석적 연구)

  • Jeon, Heung Kyun;Kim, In Won;Kwon, Young Doo;Kwon, Soon Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.219-225
    • /
    • 2014
  • In this study, to find the characteristics of the oscillation of a terminating shock wave in a transonic airfoil flow with non-equilibrium condensation, a NACA00-12,14,15 airfoil flow with non-equilibrium condensation is investigated through numerical analysis of TVD scheme. Transonic free stream Mach number of 0.81-0.90 with the variation of stagnation relative humidity and airfoil thickness is tested. For the free stream Mach number 0.87 and attack angle of ${\alpha}=0^{\circ}$, the increase in stagnation relative humidity attenuates the strength of the terminating shock wave and inactivates the oscillation of the terminating shock wave. For the case of $M_{\infty}=0.87$ and ${\phi}_0=60%$, the decreasing rate in the frequency of the shock oscillation caused by non-equilibrium condensation to that of ${\phi}_0=30%$ amounts to 5%. Also, as the stagnation relative humidity gets larger, the maximum coefficient of drag and the difference between the maximum and minimum in $C_D$ become smaller. On the other hand, as the thickness of the airfoil gets larger, the supersonic bubble size becomes bigger and the oscillation of the shock wave becomes higher.

Frost Formation on a Cold Cylindrical Surface in Cross Flow (직교류내 원통형 냉각표면에서의 착상)

  • Lee, Kwan-Soo;Lee, Dong-Hoon;Yang, Dong-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.989-995
    • /
    • 2004
  • This paper presents a semi-empirical model to predict the frost growth formed on the cold cylinder surface. The model is composed of the correlations for frost properties including the various frosting parameters and local heat transfer coefficient. The effects of varying the correlations for local heat transfer coefficient on the frost growth are examined to establish the model. The numerical results are compared with experimental data obtained by the previous researchers. The results agree well with the experimental data within a maximum error of $13\%$. As the results, the frost thickness decreases with changing angular position from front stagnation to separation point. Also, the effects of air velocity on the frost growth are negligible, as compared to the other frosting parameters.

Analysis of Particle Motion Impinging on a Flat Plate (평판에 충돌하는 미립자의 유동분석)

  • Kim, Jin;Kim, Byung-Moon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • The particles velocity in the instantaneous flow field and velocity change of particles along the jet centerline for various particle diameter in a circular turbulent impingement jet are investigated by using particle image velocimetry(PIV) and an equation of particle motion simplified by terms of inertia forces, drag and gravitational force. The jet Reynolds number was 3300 and 8700, and glass beads of 30,58 and 100$\mu$m in diameter were used. The PIV results show that the direction and size of velocity depends not only on the number density of particle but also on the particle momentum. The results obtained form calculation suggest that the particle velocity near the first impingement region deviated from local air velocity, which accords well with the PIV results. The rebound height of particle increase with the particle diameter. In the second-impingement, particle velocities increased sluggishly with Re=3300 but particle velocities uniformed with Re=8700 in stagnation region.

Development of Three-dimensional Tomography Technique for Analysis of Impinging Jet (충돌 제트 분석을 위한 3차원 토모그래피 기법 개발)

  • Kim Yong-Jae;Ahn Seong Soo;Ko Han Seo
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.34-35
    • /
    • 2004
  • Three dimensional density distributions of impinging and eccentric flames have been investigated by digital speckle tomography. The flames have been ignited by a mixture of butane and air from a circular nozzle and impinged against a plate located at the upper side of the burner exit. For comparison with experimental data, computer synthesized phantoms of impinging and eccentric flames have been reconstructed by a developed three-dimensional multiplicative algebraic reconstruction technique (MART). The advanced reconstruction in the stagnation flow region involved the sharp change of the flow direction and pressure gradient has been developed using a cross-correlation method and new scanning technique for the speckle displacement.

  • PDF

Parametric Study of Subscale Ejector for Pressure Recovery of Chemical Lasers (화학레이저 압력회복을 위한 축소형 이젝터의 성능변수)

  • Kim Sehoon;Kim Hyungjun;Kwon Sejin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.135-138
    • /
    • 2002
  • High-speed ejection of burnt gases from the resonator cavity is essential for performance optimization of the chemical laser system. Additionally, to maintain the population of lasing species at a level for maximum optical power, the pressure within the cavity must be of order of 10 torr. In the present study, a small-scale ejector was designed and built for parametric study of its performance. High-pressure air was used as a motive gas. Measurements include schlieren visualization and pressure distribution trace near the ejector nozzle and along the diffuser downstream of the ejector. preliminary tests showed performance of the ejector is a function of parameters including mass flow rate and stagnation pressure of the motive gas, ejector nozzle area ratio, throat area of the diffuser downstream of the ejector.

  • PDF