• Title/Summary/Keyword: Air quantity

Search Result 509, Processing Time 0.029 seconds

The Effect of Air Injection Quantity on Stabilization of Screened Soil in Aerobic Bioreactor Landfill (호기성 Bioreactor 매립지에 있어서 공기주입량이 선별토사의 안정화에 미치는 영향)

  • Park, Jin-Kyu;Lee, Nam-Hoon;Kim, Nack-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.104-109
    • /
    • 2004
  • In this study, we stabilized the screened soil from landfills by using aerobic bioreactor and evaluated aerobic decomposition of it. Four lab-scale bioreactors (anaerobic and 1 PV/day aeration, 5 PV/day aeration, 10 PV/day aeration) filled with screened soil were operated to investigate the effect of air injection quantity on stabilization of screened soil. In case of aerobic bioreactors, the decomposition of organics in screened soil was higher than anaerobic bioreactor. According to the results of landfill gas and soil respiration test, the air injection quantity of 5 PV/day was most efficient in stabilization of screened soil.

  • PDF

Cooling Performance Deficiency of Air Conditioning System According to Air Quantity Included in Refrigerant (냉매 내 공기혼입에 따른 에어컨 시스템의 냉각성능 저하)

  • Moon, Seong-Won;Min, Young-Bong;Chung, Tae-Sang
    • Journal of Biosystems Engineering
    • /
    • v.34 no.6
    • /
    • pp.470-475
    • /
    • 2009
  • This study was performed to present the diagnosis basis of cooling performance deficiency according to air quantity included in refrigerant of air-conditioner by detecting the temperatures and pressures of refrigerant pipeline. The car air-conditioner of SONATA III (Hyundai motor Co., Korea) was tested by maximum cooling condition at 1500 rpm of engine speed in the room with controlled air condition at $33\sim35^{\circ}C$ and 55~57% RH. Measured variables were temperature differences between inlet and outlet pipe surface of the compressor (Tcom), condenser (Tcon), receive dryer (Trec) and evaporator (Teva), and high pressure (HP) and low pressure (LP) in the refrigerant pipeline, and temperature difference (Tcoo) between inlet and outlet air of the cooling vent of evaporator. Control variables were the refrigerant charging weight and the vacuum degree in the refrigerant pipeline before charging refrigerant. From the test, it was represented that the measuring values of (Tcom), LP and (Tcoo) were enabled to make the diagnosis of cooling performance deficiency according to quantity included in refrigerant of air-conditioner. The ranges of Tcom, LP and Tcoo to make the diagnosis of cooling performance deficiency were respectively less than $55^{\circ}C$, more than 166.7 kPa-g(1.7 kgf/$cm^2$) and less than $13.7^{\circ}C$. In the case of using only external sensors and the condition under the normal performances of air conditioner, it was considered that the ranges of LP and Tcoo to make the diagnosis of cooling performance deficiency were respectively more than 166.7 Pa and less than $12^{\circ}C$.

A Study on the Urea-SCR System for NOx Reduction of a light-Duty Diesel Engine (소형 디젤엔진의 NOx 저감을 위한 Urea-SCR 시스템에 관한 연구)

  • Nam Jeong-Gil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.57-63
    • /
    • 2005
  • The effects of an urea injection at the exhaust pipe for a 4-cylinder DI(Direct Injection) diesel engine were investigated with the parameters such as urea-SCR(Selective Catalytic Reduction) and EGR system. The urea quantity was controlled by NOx quantity and MAF(Manifold Air Flow). The urea injection quantity can be controlled with the urea syringe pump, precisely. The effects of NOx reduction for the urea-SCR system were investigated with and without ECR engine, respectively. It was concluded that the SUF(Stoichiometric Urea Flow) is calculated and the NOx results are visualized with engine speed and load. Furthermore, the NOx map is made from this experimental results. It was suggested, therefore, that NOx reduction effects of the urea-SCR system without the EGR engine were better than that with the EGR engine except of low load and low speed.

Analysis of Heat Quantity in CNG Direct Injection Bomb(2) : Inhomogeneous Charge (CNG 직접분사식 연소기에서의 열량해석(2) : 비균질급기)

  • 최승환;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.24-31
    • /
    • 2004
  • A cylindrical constant volume combustion bomb is used to investigate the combustion characteristics and to analyzer the heat quantity of inhomogeneous charge methane-air mixture. To analyze the heat quantity, some definitions including the CHR ratio, the UHC ratio and the HL ratio are needed and are calculated. It is shown that the effect of stratification is not significant in case of the overall excess air ratio of 1.1, mainly due to the higher heat loss and lower thermal efficiency compared to those of homogeneous condition. In the case of the overall excess air ratio of 1.4, as the initial charge pressure decreases, the CHR ratio has been decreased while the HL ratio has been increased, Generally, as the initial charge pressure increases, the amount of injection mixture has been decreased and has resulted in lower mean velocity and turbulence intensity for injection mixture. Also, the injected mixture is too rich to result in mixing deficiency in combustion chamber. From these results, it could be possible to acquire the improvement of thermal efficiency and the reduction of heat loss simultaneously through the 2-stage injection in CNG direct injection engine.

Study of Performance Optimization as an Alternative Refrigerant HFC152a in a Mobile Air Conditioning System (HFC152a 대체냉매를 이용한 자동차 냉방장치의 성능 최적화에 관한 연구)

  • Lee, Daewoong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.6
    • /
    • pp.321-327
    • /
    • 2015
  • This study presents an HFC152a refrigerant air conditioner as an alternative to HFC134a, which is currently used in mobile air conditioning systems. Cool-down performance tests of an HFC152a air conditioning system were conducted and compared to a baseline HFC134a air conditioner. The experimental set-up consisted of a belt-driven compressor, a sub-cooled type condenser, an evaporator, and a block-type thermal expansion valve (TXV). A drop-in test was carried out on the mobile air conditioning system under various vehicle running speeds in a climate-controlled wind tunnel (CWT). Additionally, to optimize the HFC152a air conditioning system, the effects of the TXVs on the performance were studied. The results show that compared to the HFC134a air conditioning system, the refrigerant charge quantity was reduced by approximately 20%, the discharge pressure was reduced by about 350~430 kPa, and the air discharge temperature at vehicle running conditions was $0.5{\sim}1.5^{\circ}C$ lower. In addition, good compressor durability was expected due to the lower compression ratio.

Plotting of 13 Kinds of Properties on Temperature-Entropy Chart of Air (공기의 온도-엔트로피 선도 상에서 13 종류의 물성치 작도)

  • Kim, Deok-Jin;Kim, Duck-Bong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1191-1196
    • /
    • 2009
  • The T-s chart of air displays graphically the thermophysical properties, so it is very conveniently used in various thermal systems. In previous study, the software analyzing 31 kinds of values in water system and 32 kinds of values in air-conditioning system were developed. In this study, the software drawing 13 kinds of quantity of state on air properties as ideal gas and analyzing 25 kinds of values in any air system was developed. The 13 kinds of quantity of state on air properties are temperature, pressure, specific volume, specific internal energy, specific enthalpy, specific entropy, specific exergy, exergy ratio, density, isobaric specific heat, isochoric specific heat, ratio of specific heat, and velocity of sound, and the 25 kinds of values including 13 kinds are mass flow rate, volume flow rate, internal energy flow rate, enthalpy flow rate, entropy flow rate, exergy flow rate, heat flow rate, power output, power efficiency, reversible work, lost work, and relative humidity. The developed software can draw any range of chart and analysis any state or process on air system. Also, this supports various document-editing functions such as power point. We wish to this chart is a help to design, analysis, and education in air system field.

  • PDF

The Thermal Environmental Characteristics for Task-Ambient Air-Conditioning System in Heating Condition (Task-Ambient 공조시스템의 난방시 열환경 특성에 관한 실험적 연구)

  • 이정재;윤창오;정광섭;한화택;박영철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2001
  • Recently, the requirement of healthier and more comfortable environment makes the zoning domain more details. However, it has limitation to satisfy the thermal comfort of an individual because of the effect of the heat generation from the OA machine and partitions in indoor room. In this paper, we certify the validity of task-ambient air-conditioning system that has been developed as a new concept of personal air-conditioning system, and specify design strategies for more efficient task-ambient air-conditioning system with a specification guided by indoor environmental characteristics analyzed through experiment data. In this experiment, we changed the temperature and the quantity of air-flow in task domain to understand characteristic behavior of the thermal environment and investigate the possibility of energy saving. The experiment result is that the environment of the task area depends on the condition of supply air, and though the airflow of the low temperature is supplied with the ambient area, the personal environment and the efficiency of energy saving are improved by controlling the temperature and the quantity of the air shot around the task domain.

  • PDF

A Study on Dependence of Smoke Emission in Diesel Engines Upon Diffusion Combustion (디젤기관의 스모크배출의 확산연소 의존성에 관한 연구)

  • 한성빈;문성수;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.397-404
    • /
    • 1994
  • Smoke is emitted in diesel engines because fuel injected into the high-temperatured and high-pressured combustion chamber burns with its mixture with insufficient oxygeny. In consideration of air pollution, above all, it is necessary to illuminate the cause of smoke emission in diesel engines. The smoke emission, which is characteristic of diffusion combustion in diesel engines, results from pyrolysis of fuel not mixed with air. Therefore the smoke emission is dependent on diffusion combustion quantity, which is in turn controlled by engine parameter. The study aims at making clear and interpreting the interdependence of smoke emission in diesel engines with heat released within combustion chamber, camparing diffusion combustion quantity according to each engine parameter (air fuel ratio, injection timing, and engine speed), and showing the relation between smoke emission and fraction of diffusion combustion through experiment.

Water Injection/Urea SCR System Experimental Results for NOx Reduction on a Light Duty Diesel Engine

  • Nam, Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.394-403
    • /
    • 2008
  • The effects of water injection (WI) and urea injection for NOx on a 4-cylinder Direct Injection (DI) diesel engine were investigated experimentally. For water injection, it was installed at the intake pipe and the water quantity was controlled at the intake manifold and Manifold Air Flow (MAF) temperatures while the urea injection was located at the exhaust pipe and the urea quantity was controlled by NOx quantity and MAF. The effects of WI system, urea-SCR system and the combined system were investigated with and without exhaust gas recirculation (EGR). Several experiments were performed to characterize the urea-SCR system, using engine operating points of varying raw NOx emissions. The results of the Stoichiometric Urea Flow (SUF) and NOx map were obtained. In addition, NOx results were illustrated according to the engine speed and load. It is concluded that the NOx reduction effects of the combined system without the EGR were better than those with the EGR-based engine.

Optimum Design Condition of the Collins Cryocooler (Collins 내동기의 최적 설계조건)

  • Lee, S.W.;Kim, S.Y.;Jung, P.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.3
    • /
    • pp.183-190
    • /
    • 1992
  • The Collins cryocooler is numerically analysed with the optimization technique, and the optimum operating and design conditions are searched. This paper shows that liquefied helium quantity has an external maximum w.r.t. the total mass flow rate, the mass flow rates through expander and the capacities of heat exchangers. The liquefied helium quantity increases as the compressor exit pressure of the cryocooler does. The maximum quantity of liquefied helium and the maximum coefficient of performance have been found to exist in extremum, depending on the ratios of each heat exchanger capicities to the total one. At the optimum condition, the capacity of heat exchanger in high temperature region is larger than that in low temperature region.

  • PDF