• 제목/요약/키워드: Air quality monitoring system

검색결과 160건 처리시간 0.03초

부산 연안역의 오존 농도에 미치는 해풍의 영향 (The Influences of 5ea Breeze on Surface Ozone Concentration in Pusan Coastal Area, Korea)

  • 김유근;이화운
    • 한국환경과학회지
    • /
    • 제5권3호
    • /
    • pp.265-275
    • /
    • 1996
  • Air pollution characteristics and the influence of sea breeze on surface ozone concentration were studied using the data measured at 7 air quality continuous monitoring stations from June to September using 3 years (1990, 1993, 1994) in Pusan coastal area. Among the 246 sea breeze days for research Period, there were approximately 89 sea breeze days (36%) from lune to September, And there were 120 the episode days (68%) of ozone greater than or equal to 60 ppb in summer season. In 89 sea breeze days, the episode day was highly marked as 56 days (63%). So, we knew that the sea breeze greatly affects the occurence of ozone episode day. the ozone concentration under the condition of the sea breeze increase about 40% in the daytime. Frequencies distribution of $O_3$ concentration for sea breeze moved toward high concentration class. The characteristics of ozone concentration in relation to meteorological conditions of sea breeze is significant because we can discover major weather factors for eastablishing an air pollution- weather forecast system. For further. study about meterological approach method for photochemical air pollution, it is necessary to explain the characteristics of atmosphere below 1, 000 m, especially concerning the formation mechanism of inversion layers. And finally, we will study the relationships to synoptic weather conditions and vertical structure and diurnal variation of local wind systems including sea breeze, and the vertical movements of atmosphere in the city.

  • PDF

DNA-functionalized single-walled carbon nanotube-based sensor array for gas monitoring

  • Zhang, Wenjun;Liu, Yu;Wang, Ming. L
    • Smart Structures and Systems
    • /
    • 제12권1호
    • /
    • pp.73-95
    • /
    • 2013
  • Nine deoxyribonucleic acid (DNA) sequences were used to functionalize single-walled carbon nanotube (SWNT) sensors to detect the trace amount of methanol, acetone, and HCl in vapor. DNA 24 Ma (24 randomly arranged nitrogenous bases with one amine at each end of it) decorated SWNT sensor and DNA 24 A (only adenine (A) base with a length of 24) decorated SWNT sensor have demonstrated the largest sensing responses towards acetone and HCl, respectively. On the other hand, for the DNA GT decorated SWNT sensors with different sequence lengths, the optimum DNA sequence length for acetone and HCl sensing is 32 and 8, separately. The detection of methanol, acetone, and HCl have identified that DNA functionalized SWNT sensors exhibit great selectivity, sensitivity, and repeatability with an accuracy of more than 90%. Further, a sensor array composed of SWNT functionalized with various DNA sequences was utilized to identify acetone and HCl through pattern recognition. The sensor array is a combination of four different DNA functionalized SWNT sensors and two bare SWNT sensors (work as reference). This wireless sensing system has enabled real-time gas monitoring and air quality assurance for safety and security.

공조설비 온라인 유지관리시스템 개발 및 효과분석 (A Development of the On-line Maintenance and Management System for the HVAC Systems and the Evaluation of Its Effects)

  • 이태원;김용기;우남섭
    • 설비공학논문집
    • /
    • 제21권11호
    • /
    • pp.591-598
    • /
    • 2009
  • The service quality with the various building equipments tends to depend on the individual superintendent's capability and efforts generally and this often lead to poor maintenances and managements of them. N-BMS(Networked Building Management System), proposed in this study, is a new type of building management method, which links principal equipments within many buildings into a communication network and carries out several significant missions such as fault detection, deterioration diagnosis and control the equipments and so on, as well as monitoring which is the main and unique purpose of the conventional BMS. How to construct the N-BMS was considered to keep performance of equipments high and thus to save energy and resource. LCC(Life Cycle Cost) based analysis was also performed in order to verify the effects of some maintenance and management works for the building HVAC systems.

Algorithm Development of a Visibility Monitoring Technique Using Digital Image Analysis

  • Pokhrel, Rajib;Lee, Hee-Kwan
    • Asian Journal of Atmospheric Environment
    • /
    • 제5권1호
    • /
    • pp.8-20
    • /
    • 2011
  • Atmospheric visibility is one of the indicators used to evaluate the status of air quality. Based on a conceptual definition of visibility as the maximum distance at which the outline of the selected target can be recognized, an image analysis technique is introduced here and an algorithm is developed for visibility monitoring. Although there are various measurement techniques, ranging from bulk and precise instruments to naked eye observation techniques, each has their own limitations. In this study, a series of image analysis techniques were introduced and examined for in-situ application. An imaging system was built up using a digital camera and was installed on the study sites in Incheon and Seoul separately. Visual range was also monitored by using a dual technology visibility sensor in Incheon and transmissometer in Seoul simultaneously. The Sobel mask filter was applied to detect the edge lines of objects by extracting the high frequency from the digital image. The root mean square (RMS) index of variation among the pixels in the image was substantially correlated with the visual ranges in Incheon and Seoul with correlations of $R^2$=0.88 and $R^2$=0.71, respectively. The regression line equations between the visual range and the RMS index in Incheon and Seoul were VR=$2.36e^{0.46{\times}(RMS)}$ and VR=$3.18e^{0.15{\times}(RMS)}$, respectively. It was also confirmed that the fine particles ($PM_{2.5}$) have more impacts to the impairment of visibility than coarse particles.

다중 이용 시설에 대한 온.습도 모니터링에 관한 연구 (The Study on the Monitoring of Temperature and Humidity in Public Utilization Facilities)

  • 최만용;채경희;김기복;김수언
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1470-1475
    • /
    • 2009
  • Until now for the safety of structures and equipment monitoring technology to measure the amount of the physical, if that is the one, one-point or single-source target is one the most. Therefore, becoming more numerous and complex to measure the amount of physical measurement technology that is comprehensive and complex, multi-source concepts to the monitoring of a multi-sensing technology is required. Have the same characteristics of multi-source multi-use space such as a multi-structure of facilities/equipment is. The people's safety in a multi-use facility will be directly related to life and even a little carelessness can lead to large-scale disaster occurs because of several factors, risks and to manage detect in advance the development of an intelligent monitoring technology is essential. Therefore, this study shows that multiple structures/facilities to improve the quality of human life in research to maintain a safe and comfortable living space for multi-source intelligence to the development of monitoring technology to achieve that goal, and the ubiquitous sensor network system on the basis of the wireless transmission module, and multiple research facilities/equipment for the ultra-small sensors for health monitoring study was performed.

  • PDF

지리정보시스템(GIS) 및 존재인구를 이용한 초미세먼지(PM2.5) 노출평가 (Existing Population Exposure Assessment Using PM2.5 Concentration and the Geographic Information System)

  • 우재민;민기홍;김동준;조만수;성경화;원정일;이채관;신지훈;양원호
    • 한국환경보건학회지
    • /
    • 제48권6호
    • /
    • pp.298-305
    • /
    • 2022
  • Background: The concentration of air pollutants as measured by the Air Quality Monitoring System (AQMS) is not an accurate population exposure level since actual human activities and temporal and spatial variability need to be considered. Therefore, to increase the accuracy of exposure assessment, the population should be considered. However, it is difficult to obtain population data due to limitations such as personal information. Objectives: The existing population defined in this study is the number of people in each region's grid. The purpose is to provide a methodology for evaluating exposure to PM2.5 through existing population data provided by the National Geographic Information Institute. Methods: The selected study period was from October 26 to October 28, 2021. Using PM2.5 concentration data measured at the Sensor-based Air Monitoring Station (SAMS) installed in Guro-gu and Wonju-si, the concentration for each grid was estimated by applying inverse distance weights through QGIS version 3.22. Considering the existing population, population-weighted average concentration (PWAC) was calculated and the exposure level of the population was compared by region. Results: The outdoor PM2.5 concentration as measured through the SAMS was high in Wonju-si on all three days. Wonju-si showed an average 22% higher PWAC than Guro-gu. As a result of comparing the PWAC and outdoor PM2.5 concentration by region, the PWAC in Guro-gu was 1~2% higher than the observed value, but it was almost the same. Conversely, observations of Wonju-si were 10.1%, 11.3%, and 8.2% higher than PWAC. Conclusions: It is expected that the Geographic Information System (GIS) method and the existing population will be used to evaluate the exposure level of a population with a narrow activity radius in further research. In addition, based on this study, it is judged that research on exposure to environmental pollutants and risk assessment methods should be expanded.

UAV 엔진 소음에 의한 비행체점검장비(AVTE) 정지 현상 개선방안 연구 (A Study on the Improvement of Air Vehicle Test Equipment(AVTE) stop by UAV Engine noise)

  • 강주환;임다훈
    • 한국산학기술학회논문지
    • /
    • 제21권1호
    • /
    • pp.90-96
    • /
    • 2020
  • 현 시대에 있어 정보력은 국방 분야에 있어 굉장히 주요한 요인으로 손꼽히고 있다. 따라서 감시 및 정찰을 위한 무기체계 기술 확보가 불가피해졌다. 이에 따라 군이 직접 수행하기에는 너무 위험하거나(Dangerous), 지저분하거나(Dirty), 지루한(Dull) 환경과 같이 유인항공기의 비행운용이 제한되는 경우에 무인항공기(UAV)가 개발되어 전 세계적으로 활발히 운용 중에 있다. 국내에서 연구 개발된 한 무인항공기 체계에는 구성품 중 비행체 점검 장비가 포함되어 있다. 비행체 점검 장비는 무인항공기와 연결되어 그것의 상태를 확인하는 장비로, 무인항공기에 동작 명령을 인가하고 명령 값을 추종하는 지 확인함으로써 운용자로 하여금 비행 가능 여부를 점검할 수 있도록 하는 장비이다. 본 연구는 이러한 운용 중 엔진 소음에 의하여 비행체 점검 장비가 정지한 현상에 대한 고장탐구를 실시하고 소프트웨어, 하드웨어 그리고 외부 환경의 측면에서 원인을 분석한다. 분석된 원인에 따라 개선방안을 제시하고 제안된 방안이 고장을 방지할 수 있음을 검증한 결과를 다룬다.

The Kwinana Shoreline Fumigation Experiment in Western Australia, Australia

  • Yoon, I.H.;Sawford, B.L;Manins, P.C.
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 1996년도 봄 학술발표회 초록집
    • /
    • pp.22-22
    • /
    • 1996
  • ;The Kwinana Shoreline Fumigation Experiment(KSFE) took place in Fremantle, WA, Australia between 23 January and 8 February, 1995. All measurement systems performed to expectation. The CSIRO DAR(Division of Atmospheric Research) LIDAR measured plume sections from near the Kwinana Power Station(KPS) stacks to up to about 5 km downstream. It also measured boundary layer aerosols and the structure of the boundary layer on some occasions. Both stages A and C of KPS were used as tracers at different times. Radiosonde and double theodolite sounding systems measured temperature, humidity, air pressure and wind structure at the coast(Woodman Point) and at the inland(ALCOA residue dump) site at intervals of roughly two hours. These were supplemented by mid afternoon soundings(radiosonde and single theodolite) by Department of Environmental Protection(DEP) at Swanbourne. The Flinders aircraft measured wind, turbulence and temperature structure of the atmospheric boundary layer, concentrations of $C0_2,\;0_3,\;S0_2\;and\;NO_x$ in the smoke plumes and surface radiation over both land and sea. CSIRO DCET(Division of Coal and Energy Technology) vehicle successfully interceptde many smoke plumes and using a range of tracers will be able to identify the various sources much of the time. Routine data from the DEP and Kwinana Industrial Council(KIC) air quality monitoring networks were also automatically logged. Murdoch University measured surface heat flux at Hope Valldy monitoring station and also at Wattleup monitoring station for the last five days. The heart of the LIDAR system is a Neodymium-doped Yttrium-aluminumgarnet(Nd:Y AG) laser operating at a fundamental wavelength of 1064 nm, with harmonics fo 532 nm and 355 nm. A small fraction of the laser beam is scattered back to the LIDAR, collected by a telescope and detedted by a photomultiplier tube. The intensity of the signal as a function of time is a measure of the particle concentration as a function of distance along the line of the laser shot. The results of nine days special field observations are summarized in detail.etail.

  • PDF

상황센서 기반의 밴드를 이용한 건강정보 모니터링 시스템 (Health Information Monitoring System using Context Sensors based Band)

  • 정경용;이영호;류중경
    • 한국콘텐츠학회논문지
    • /
    • 제11권8호
    • /
    • pp.14-22
    • /
    • 2011
  • 헬스케어가 예방의료 중심으로 다변화 되어가는 생활환경 속에서 건강정보를 제공하는 것은 서비스 전략의 중요한 성공요소가 되고 있다. 최근에는 u-헬스케어의 다양한 어플리케이션이 연구자에 의해 제시되고 있다. 본 논문에서는 상황센서 기반의 밴드를 이용한 건강정보 모니터링 시스템을 제안하였다. 제안된 밴드를 착용하여, 건강상태를 수집하고 생체신호를 UMPC로 무선 전송되어 이를 사용자의 위치에 따라 실시간으로 모니터링 할 수 있도록 고안하였다. 체온, 기온, 조도, 습도, 자외선에 따른 건강지수를 제공하기 위해서, 기상청의 RSS로 부터 추출한 다양한 XML 링크를 활용한다. 건강정보는 천식지수, 뇌졸중지수, 피부질환지수, 폐질환지수, 꽃가루농도지수, 도시고온지수의 요소에 따라 분석한다. 제안하는 시스템을 개발하여 논리적 타당성과 유효성을 검증하기 위해 실험적인 적용을 시도하고자 한다. 따라서 헬스케어에서 서비스의 만족도와 질을 향상시켰다.

지표투과레이더와 적외선카메라를 이용한 아스팔트 포장 시공 관리 방법 (Construction Management Method for Asphalt Paving Using Ground Penetrating Radar and an Infrared Camera)

  • 백종은;박희문;유평준;임재규
    • 한국도로학회논문집
    • /
    • 제17권6호
    • /
    • pp.1-9
    • /
    • 2015
  • PURPOSES : The objective of this study is to propose a quality control and quality assurance method for use during asphalt pavement construction using non-destructive methods, such as ground penetrating radar (GPR) and an infrared (IR) camera. METHODS : A 1.0 GHz air-coupled GPR system was used to measure the thickness and in situ density of asphalt concrete overlay during the placement and compaction of the asphalt layer in two test construction sections. The in situ density of the asphalt layer was estimated based on the dielectric constant of the asphalt concrete, which was measured as the ratio of the amplitude of the surface reflection of the asphalt mat to that of a metal plate. In addition, an IR camera was used to monitor the surface temperature of the asphalt mat to ensure its uniformity, for both conventional asphalt concrete and fiber-reinforced asphalt (FRA) concrete. RESULTS : From the GPR test, the measured in situ air void of the asphalt concrete overlay gradually decreased from 12.6% at placement to 8.1% after five roller passes for conventional asphalt concrete, and from 10.7% to 5.9% for the FRA concrete. The thickness of the asphalt concrete overlay was reduced from 7.0 cm to 6.0 cm for the conventional material, and from 9.2 cm to 6.4 cm for the FRA concrete. From the IR camera measurements, the temperature differences in the asphalt mat ranged from $10^{\circ}C$ to $30^{\circ}C$ in the two test sections. CONCLUSIONS : During asphalt concrete construction, GPR and IR tests can be applicable for monitoring the changes in in situ density, thickness, and temperature differences of the overlay, which are the most important factors for quality control. For easier and more reliable quality control of asphalt overlay construction, it is better to use the thickness measurement from the GPR.