• Title/Summary/Keyword: Air pressure method

Search Result 1,255, Processing Time 0.032 seconds

An Analysis of Dynamic Characteristics of Air-Lubricated Slider Bearing by Using Perturbation Method (섭동법을 이용한 공기윤활 슬라이더 베어링의 동특성 해석)

  • Gang, Tae-Sik;Choe, Dong-Hun;Jeong, Tae-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1520-1528
    • /
    • 2000
  • This study presents a method for determining bearing stiffness and damping coefficients of air-lubricated slider bearing, and shows influences of air-bearing surface geometry(recess depth, crown an d pivot location) on flying attitude and dynamic characteristics. To derive the dynamic lubrication equation, the perturbation method is applied to the generalized lubrication equation which based on linearized Boltzmann equation. The generalized lubrication equation and the dynamic lubrication equation are converted to a control volume formulation, and then, the static and dynamic pressure distributions are calculated by finite difference method. The recess depth and crown of the slider show significantly influence on flying attitude and dynamic characteristics comparing with those of pivot location.

Influence of air pressure, temperature, humidity and CO$_{2}$ concentration on optical phase changes in thin films

  • Kim, Moon-Hwan;Tachikawa, Yoshihiko;Ogita, Eiji;Ueda, Toshitsugu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.799-804
    • /
    • 1989
  • A new method for measuring optical phase changes of reflection beam from optical mirror is proposed. The optical phase change is liable to change with varying atmosphere conditions. This optical phase changes are measured against air pressure, temperature, humidity and CO$\_$2/ concentration variations. It is clarified that the optical phase changes are most effected by humidity change.

  • PDF

Navier-Stokes Analysis of Pitching Delta Wings in a Wind Tunnel

  • Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.28-38
    • /
    • 2001
  • A numerical method for the assessment and correction of tunnel wall interference effects on forced-oscillation testing is presented. The method is based on the wall pressure signature method using computed wall pressure distributions. The wall pressure field is computed using unsteady three-dimensional full Navier-Stokes solver for a 70-degree pitching delta wing in a wind tunnel. Approximately-factorized alternate direction implicit (AF-ADI) scheme is advanced in time by solving block tri-diagonal matrices. The algebraic Baldwin-Lomax turbulence, model is included to simulate the turbulent flow effect. Also, dual time sub-iteration with, local, time stepping is implemented to improve the convergence. The computed wall pressure field is then imposed as boundary conditions for Euler re-simulation to obtain the interference flow field. The static computation shows good agreement with experiments. The dynamic computation demonstrates reasonable physical phenomena with a good convergence history. The effects of the tunnel wall in upwash and blockage are analyzed using the computed interference flow field for several reduced frequencies and amplitudes. The corrected results by pressure signature method agree well with the results of free air conditions.

  • PDF

An Experimental Study for Noise Reduction of the Cross-Flow Fan of the Room Air-Conditioners

  • Koo, Hyoung-Mo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.89-100
    • /
    • 2000
  • Present study explains some experimental results on the aerodynamic noise of the cross-flow fan usually installed in the indoor unit of the room air-conditioners and provides a simple reduction method of radiating sound to decrease the total noise level. The spectra of the noise of the cross-flow fan were analyzed by the spectral decomposition method to characterize the generated sound. The unsteady fluctuating flow field was also measured using the I-type hot-wire probe. Comparing the spectral characteristics of the sound and the flow velocity, a useful noise reduction method was proposed, which bounds the region with a fence where the flow fluctuations were noticeably changed in the same fashion as the source spectral distribution functions vary. To validate the proposed method for reducing noise generated by the cross-flow fan, the sound pressure levels of the cross-flow fan system were compared with and without the bounding fence for various flow rates.

  • PDF

Indicated and Load Torque Estimation of SI-Engine using Cylinder Pressure Sensor (실린더 압력센서를 사용한 가솔린 엔진의 도시토크와 부하토크의 추정)

  • 백종탁;박승범;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.1-6
    • /
    • 2003
  • The torque is an important measure that represents the performance of a particular engine. Furthermore the information of engine torque can be used as a primary feedback parameter in modem engine management system. In this paper, a methodology is proposed for torque estimation of SI-engine. Since the proposed method uses cylinder pressure sensor, the torque can be estimated in a simple manner. The indicated torque is estimated from the peak pressure and its location, and the load torque is observed by the state observer based on the estimated indicated torque. The proposed method is accurate and robust against the variations that affect the torque production such as spark timing, mass air flow and others. This torque estimation method may be an alternative solution to the use of engine torque maps in a modem torque-based engine management system.

Correlation Analysis of Parameters affecting Pressure Distributions in Vertical Shafts by Design of Experiments (실험계획법에 의한 수직샤프트내 압력분포에 영향을 미치는 인자간 상관관계 분석)

  • Han, Hwa-Taik;Shin, Chul-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.883-888
    • /
    • 2008
  • Various effluents generated in cooking processes contribute a great deal to indoor air pollution among many other indoor pollutants such as dusts from outdoor and carbon dioxide from human body. Kitchen exhaust hoods are not believed to exhaust indoor contaminants properly in many cases, while generating too much noise. Instead of focusing on individual products of kitchen hoods, we should address the problem by attacking the ventilation system as a whole including vertical shafts and building air-tightness. In this study, it is intended to investigate the pressure distribution along the vertical shaft depending on various system parameters, such as shaft size, concurrent hood usage rate, roof fan, inlet pressure loss, and outdoor temperature. The maximum static pressure in the vertical shaft has been obtained using the method of design of experiments and analyzed by the analysis of variance. The results can be used for the design of kitchen exhaust systems by analyzing the pressure distributions in vertical shafts.

  • PDF

Accurate Prediction Method of Breakdown Voltage in Air at Atmospheric Pressure

  • Kim, Nam-Kyung;Lee, Se-Hee;Georghiou, G.E.;Kim, Dong-Wook;Kim, Dong-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.97-102
    • /
    • 2012
  • To predict accurately the breakdown voltage in air at atmospheric pressure, a fully coupled finite element analysis combining the hydrodynamic diffusion-drift equations with Poisson's equation is proposed in the current paper. As three kinds of charged transport particles are nonlinearly coupled with spatial electric fields, the equations should be solved by an iterative numerical scheme, in which secondary effects, such as photoemission and photoionization, are considered. The proposed method has been successfully applied to evaluate the breakdown voltage in circular parallel-plane electrodes. Its validity has been proved through the comparison of the predicted and experimental results. The effects of numerical conditions of the initial charge, photoemission, and background ionization on the discharge phenomena are quantitatively assessed through Taguchi's design of experiment method.

Experimental Study on the Rapid Cooling System by Refrigerant Storage Method (냉매 저장방식에 의한 쾌속 냉각장치에 대한 실험적 연구)

  • 장기태;고준석;정상권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.937-942
    • /
    • 2003
  • In the present study, low-temperature low-pressure refrigerant storage method is proposed to achieve higher cooling capacity during a short period of time than that of a compressor in steady operation. Experimental apparatus was designed and set up to analyze the performance of the new-conceptual cooling system. Two reservoirs for sequential storage of refrigerant were used in the cooling system. Several on/off solenoid valves were installed for control of refrigerant flow. From the experimental results, the initial rapid cooling by low temperature low-pressure refrigerant storage method was ascertained for successful operation. This rapid cooling methodology shall be useful for other low-capacity refrigeration system.

Study on the Establishment of Large Building Airtightness Measurement Standards (대규모 건물의 기밀성능 측정기준 수립에 관한 연구)

  • Lee, Dong-Seok;Ji, Kyung-Hwan;Jo, Jae-Hun
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.117-124
    • /
    • 2014
  • Airtightness standards using fan pressurization method are normally used for measuring small buildings, detached houses, and apartment units. And, it is easy to conduct airtightness measurement through this fan pressurization method. However, it can be difficult to achieve accurate measurement results for the large buildings as the height and volume of the buildings have been increased. In this paper, we studied the principle of airtightness method by fan pressurization. And, we reviewed the measurement process described in ISO 9972, EN 13829, ASTM E779, ATTMA TS 1, CAN/CGSB 149.15, and JIS A 2201. Then, we categorized the methods' items according by air flow rate (Q) and pressure difference(${\Delta}P$). As a result, we made a comparison analysis on the measurement methods appeared in each standards. And, we achieved 5 test conditions about air flow rate and pressure difference to state requirements for large buildings airtightness measurement.

Numerical analysis of the differential pressure venturi-cone flowmeter (차압식 벤튜리콘 유량계에 대한 유동해석)

  • 윤준용;맹주성;이정원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.714-720
    • /
    • 1998
  • The differential pressure venturi-cone flowmeter is an advanced flowmeter which has many advantages such as wide range of measurement, high accuracy, excellent flow turn-down ratio, low headless, short installation pipe length requirement, and etc. Like other differential pressure flowmeters, the venturi-cone flowmeter uses the law of energy conservation, but its shape and position make it perform better than others. The cone acts as its own flow conditioner and mixer, fully conditioning and mixing the flow prior to measurement. For the analysis, we used Reynolds-averaged Wavier-Stokes equations and k-$\omega$ turbulence model. The equations were fully transformed into the computational domain, the pressure-velocity coupling was made through SIMPLER algorithm, and the equations were discretized using finite analytic solutions of the liberalized equations(Finite Analytic Method). To control the separation phenomenon on the cone surface, we proposed a new shape of cone, and analyzed the flowfield in the new flowmeter system, and found the improvement on the performance of the new cone flowmeter.

  • PDF