• Title/Summary/Keyword: Air press

Search Result 453, Processing Time 0.029 seconds

Modelling of evaporation from free water surface

  • Song, Wei-Kang;Chen, Yibo
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.237-245
    • /
    • 2020
  • The process of evaporation from free water surface was simulated in a large scale environmental chamber under various controlled atmospheric conditions and also was modelled by a new mass transfer model. Six evaporation tests were conducted with increasing wind speed and air temperature in the environmental chamber, and hence the effect of atmosphere parameters on the evaporation process and the corresponding response of water were investigated. Furthermore, based on the experiment results, seven general types of mass transfer models were evaluated firstly, and then a new model consisted of wind speed function and air relative humidity function was proposed and validated. The results show that the free water evaporation is mainly affected by the atmospheric parameters and the evaporation rate increases with the increasing air temperature and wind speed. Both the air and soil temperatures are affected by the energy transformation during water evaporation. The new model can satisfactorily describe the evaporation process from free water surface under different atmospheric conditions.

Energy harvesting using an aerodynamic blade element at resonant frequency with air excitation

  • Bolat, Fevzi C.;Sivrioglu, Selim
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.379-390
    • /
    • 2019
  • In this research, we propose an energy harvesting structure with a flexible blade element vibrating at its first mode to maximize the power output of the piezoelectric material. For this purpose, a piezoelectric patch was attached on the blade element used in a small-scale wind turbine, and air load was applied with a suitable angle of attack in the stall zone. The aerodynamic load created by air excitation vibrates the blade element in its first natural frequency and maximizes the voltage output of the piezoelectric patch. The variation of power outputs with respect to electrical resistance, air speed, and extra mass is experimentally investigated for various cases. An analytical model is constituted using a single-mode blade element with piezoelectric patch dynamics, and the power outputs of the obtained model are compared with experimental results.

On wave propagation of football ball in the free kick and the factors affecting it

  • Xumao Cheng;Ying Wu
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.669-672
    • /
    • 2023
  • In this research, the researcher has examined the factors affecting the movement of the soccer ball and will show that the effects such as air resistance, altitude above sea level, wind, air pressure, air temperature, air humidity, rotation of the earth, changes in the earth's gravitational acceleration in different areas. It, the geographical length and latitude of the launch point, the change of gravitational acceleration with height, the change of pressure with height, the change of temperature with height and also the initial spin (Magnus effect) affect the movement of projectiles (especially soccer ball). We modelled th ball based on shell element and derive the motion equations by energy method. Finally, using numerical solution, the wave of the ball is studied. The influences of various parameters are investigated on wave propagation of the ball. Therefore, in short, it can be said that the main factors that play a major role in the lateral deviation of the hit ball are the initial spin of the ball and the wind.

Bioavailability of slow-desorbable naphthalene in a biological air sparging system

  • Li, Guang-Chun;Chung, Seon-Yong;Park, Jeong-Hun
    • Advances in environmental research
    • /
    • v.1 no.3
    • /
    • pp.201-210
    • /
    • 2012
  • The bioavailability of sorbed organic contaminants is one of the most important factors used to determine their fate in the environment. This study was conducted to evaluate the bioavailability of slow-desorbable naphthalene in soils. An air sparging system was utilized to remove dissolved (or desorbed) naphthalene continuously and to limit the bacterial utilization of dissolved naphthalene. A biological air sparging system (air sparging system with bacteria) was developed to evaluate the bioavailability of the slow-desorption fraction in soils. Three different strains (Pseudomonas putida G7, Pseudomonas sp. CZ6 and Burkholderia sp. KM1) and two soils were used. Slow-desorbable naphthalene continuously decreased under air sparging; however, a greater decrease was observed in response to the biological air sparging system. Enhanced bioavailability was not observed in the Jangseong soil. Overall, the results of this study suggests that the removal rate of slow-desorbable contaminants may be enhanced by inoculation of degrading bacteria into an air sparging system during the remediation of contaminated soils. However, the enhanced bioavailability was found to depend more on the soil properties than the bacterial characteristics.

Characterization of Aluminum Coated Layer in Hot Press Forming of Boron Steel (고온 프레스성형시 보론강 알루미늄 코팅층 거동특성)

  • Jang, Jeong-Hwan;Joo, Byeong-Don;Lee, Jae-Ho;Moo, Young-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.4
    • /
    • pp.183-188
    • /
    • 2008
  • Hot press forming allows geometrically complicated parts to be formed from sheet and the rapid cooling hardens them to extremely high strength. The main purpose of this research is to characterize Al coated layer in Al coated boron steel during hot press forming. For the hot press hardening experiment, test specimens were heated up to $810{\sim}930^{\circ}C$ and held for 3, 6 and 9 minutes, respectively. And then, some specimens were press hardened and others were air-cooled without any pressing for the comparison purpose. Al coated layer shows four distinct micro-structural regions of interest; diffusion zone, Al-Fe zone(I) low-Al zone(LAZ) and Al-Fe zone(II). Band-like LAZ is clearly shown at temperature ranges of $810{\sim}870^{\circ}C$ and sparsely dispersed at temperature higher than 900oC. The micro-cracking behavior in the Al coated layer during forming were also analyzed by bending and deep drawing tests. The strain concentration in softer LAZ is found to be closely related with micro-cracking and exfoliation in coated layer during forming.

Effect of Heating Process on Color Values of Rayon Fabrics Dyed with Persimmon Extract (감 추출물로 염색한 레이온직물의 열처리에 의한 발색효과)

  • Kim, Ok-Soo;Jang, Jeong-Dae
    • Fashion & Textile Research Journal
    • /
    • v.11 no.6
    • /
    • pp.961-967
    • /
    • 2009
  • In order to examine the availability of heat treatment for color developing in persimmon dyeing, the rayon fabrics dyed with persimmon extract from unripe persimmon which was used after stock and fermentation. Dyed fabrics were heated at various temperature and time by contacting press heat and drying heat. Color developing results were influenced by the difference of heating method. Press heating method is more available than drying heat method. Effect of temperature and time on ${\Delta}Ea^*b^*$ and color values of dyed rayon fabrics was considerable. Considering the practical aspect, The temperature around $140{\sim}160^{\circ}C$ and the time no longer 40 minutes can be reach the region of the full color developing by press heating process. It was very shortened than any other method(drying air heat, xenon radiation, sunlight). The dyed rayon fabrics with heat treatment have darker and deeper red-yellow color than which by sunlight and xenon radiation.

A Study on the Safety Work for an Injury of Operation Hazards( I ) (Press, Cran, Air Compressor) (유해위험작업의 안전작업을 위한 조사 연구( I ) (프레스, 크레인, 공기압축기 중심으로))

  • 김상렬;이윤호;김정동
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.65-72
    • /
    • 1993
  • This study is conducted for both examination of a possiblity of danger and investigation of operational condition of selected 120 companies, to establish the safety standard of workplace hazards.

  • PDF

The prediction of atmospheric concentrations of toluene using artificial neural network methods in Tehran

  • Asadollahfardi, Gholamreza;Aria, Shiva Homayoun;Mehdinejad, Mahdi
    • Advances in environmental research
    • /
    • v.4 no.4
    • /
    • pp.219-231
    • /
    • 2015
  • In recent years, raising air pollutants has become as a big concern, especially in metropolitan cities such as Tehran. Therefore, forecasting the level of pollutants plays a significant role in air quality management. One of the forecasting tools that can be used is an artificial neural network which is able to model the complicated process of air pollution. In this study, we applied two different methods of artificial neural networks, the Multilayer Perceptron (MLP) and Radial Basis Function (RBF), to predict the hourly air concentrations of toluene in Tehran. Hourly temperature, wind speed, humidity and $NO_x$ were selected as inputs. Both methods had acceptable results; however, the RBF neural network produced better results. The coefficient of determination ($R^2$) between the observed and predicted data was 0.9642 and 0.99 for MLP and RBF neural networks, respectively. The results of the mean bias errors (MBE) were 0.00 and -0.014 for RBF and MLP, respectively which indicate the adequacy of the models. The index of agreement (IA) between the observed and predicted data was 0.999 and 0.994 in the RBF and the MLP, respectively which indicates the efficiency of the models. Finally, sensitivity analysis related to the MLP neural network determined that temperature was the most significant factor in air concentration of toluene in Tehran which may be due to the volatile nature of toluene.

Evaluation and future predictions of air pollutants level in Karachi city

  • Mukwana, Kishan Chand;Samo, Saleem Raza;Jakhrani, Abdul Qayoom;Tunio, Muhammad Mureed;Jatoi, Abdul Rehman
    • Advances in environmental research
    • /
    • v.6 no.2
    • /
    • pp.139-146
    • /
    • 2017
  • The purpose of this study was to determine the present air pollutant concentrations and predicted levels for next 30 years in urban environment of Karachi city. For that, a total of fifty measurements were made for each twenty selected locations of the city. The locations were selected on the basis of land use pattern such as residential, commercial, industrial settlements, open areas, congested traffic and low traffic areas for investigation of air pollutants variability and intensity. The measurements were taken continuously for six months period using PM Meter, Model AEROCET 531 and Ambient Air Quality Meter, Model AAQ 7545. The concentration of air pollutants were found higher at Al Asif Square and Maripur Road due to higher intensity of traffic and at Korangi Crossing because of industrial areas. The level of pollutants was lower at Sea View owing to lower traffic congestion and transportation of pollutants by sea breezes.

Air-coupled ultrasonic tomography of solids: 1 Fundamental development

  • Hall, Kerry S.;Popovics, John S.
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.17-29
    • /
    • 2016
  • Ultrasonic tomography is a powerful tool for identifying defects within an object or structure. But practical application of ultrasonic tomography to solids is often limited by time consuming transducer coupling. Air-coupled ultrasonic measurements may eliminate the coupling problem and allow for more rapid data collection and tomographic image construction. This research aims to integrate recent developments in air-coupled ultrasonic measurements with current tomography reconstruction routines to improve testing capability. The goal is to identify low velocity inclusions (air-filled voids and notches) within solids using constructed velocity images. Finite element analysis is used to simulate the experiment in order to determine efficient data collection schemes. Comparable air-coupled ultrasonic signals are then collected through homogeneous and isotropic solid (PVC polymer) samples. Volumetric (void) and planar (notch) inclusions within the samples are identified in the constructed velocity tomograms for a variety of transducer configurations. Although there is some distortion of the inclusions, the experimentally obtained tomograms accurately indicate their size and location. Reconstruction error values, defined as misidentification of the inclusion size and position, were in the range of 1.5-1.7%. Part 2 of this paper set will describe the application of this imaging technique to concrete that contains inclusions.