DOI QR코드

DOI QR Code

Energy harvesting using an aerodynamic blade element at resonant frequency with air excitation

  • Bolat, Fevzi C. (Department of Mechanical Engineering, Bolu Abant Izzet Baysal University) ;
  • Sivrioglu, Selim (Department of Mechanical Engineering, Gebze Technical University)
  • Received : 2019.01.05
  • Accepted : 2019.08.06
  • Published : 2019.09.25

Abstract

In this research, we propose an energy harvesting structure with a flexible blade element vibrating at its first mode to maximize the power output of the piezoelectric material. For this purpose, a piezoelectric patch was attached on the blade element used in a small-scale wind turbine, and air load was applied with a suitable angle of attack in the stall zone. The aerodynamic load created by air excitation vibrates the blade element in its first natural frequency and maximizes the voltage output of the piezoelectric patch. The variation of power outputs with respect to electrical resistance, air speed, and extra mass is experimentally investigated for various cases. An analytical model is constituted using a single-mode blade element with piezoelectric patch dynamics, and the power outputs of the obtained model are compared with experimental results.

Keywords

References

  1. Abdelkefi, A., Yan, Z. and Hajj, M.R. (2013), "Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping", Smart Mater. Struct., 22(2), 025016. https://doi.org/10.1088/0964-1726/22/2/025016.
  2. Bibo, A. and Daqaq, M.F., (2013), "Energy harvesting under combined aerodynamic and base excitations", J. Sound Vib., 332(20), 5086-5102. https://doi.org/10.1016/j.jsv.2013.04.009.
  3. Bibo, A. and Daqaq, M.F., (2013), "Investigation of concurrent energy harvesting from ambient vibrations and wind using a single piezoelectric generator", Appl. Phys. Lett., 102(24), 243904. https://doi.org/10.1063/1.4811408.
  4. Bolat, F.C. and Sivrioglu, S. (2018), "Active vibration suppression of elastic blade structure: Using a novel magnetorheological layer patch", J. Intel. Mat. Syst. Str., 29(19), 3792-3803. https://doi.org/10.1177/1045389X18799441.
  5. Bolat, F.C., Basaran, S. and Sivrioglu, S. (2019), "Piezoelectric and electromagnetic hybrid energy harvesting with lowfrequency vibrations of an aerodynamic profile under the air effect", Mech. Syst. Signal Pr., 133, 106246. https://doi.org/10.1016/j.ymssp.2019.106246.
  6. Bryant, M. and Garcia, E., (2011), "Modeling and testing of a novel aeroelastic flutter energy harvester", J. Vib. Acoust., 133(1), 011010. https://doi:10.1115/1.4002788.
  7. Bryant, M., Wolff, E. and Garcia, E. (2011), "Aeroelastic flutter energy harvester design: the sensitivity of the driving instability to system parameters", Smart Mater. Struct., 20(12), 125017. https://doi.org/10.1088/0964-1726/20/12/125017.
  8. Casciati, S., Faravelli, L. and Chen, Z. (2012), "Energy harvesting and power management of wireless sensors for structural control applications in civil engineering", Smart Struct. Syst., 10(3), 299-312. https://doi.org/10.12989/sss.2012.10.3.299.
  9. De Marqui, Jr, C. and Erturk, A. (2013), "Electroaeroelastic analysis of airfoil-based wind energy harvesting using piezoelectric transduction and electromagnetic induction", J. Intel. Mat. Syst. Str., 24(7), 846-854. https://doi.org/10.1177/1045389X12461073.
  10. Erturk, A. and Inman, D.J., (2009), "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations", Smart Mater. Struct., 18(2),.025009. https://doi.org/10.1088/0964-1726/18/2/025009.
  11. Erturk, A., Vieira, W.G.R., De Marqui, Jr, C. and Inman, D.J. (2010), "On the energy harvesting potential of piezoaeroelastic systems", Appl. Phys. Lett., 96(18), 184103. https://doi.org/10.1063/1.3427405.
  12. Javed, U., Abdelkefi, A. and Akhtar, I. (2016), "An improved stability characterization for aeroelastic energy harvesting applications". Commun. Nonlinear Sci. Numer. Simul., 36, 252-265. https://doi.org/10.1016/j.cnsns.2015.12.001.
  13. Latif, U., Abdullah, C., Uddin, E., Younis, M.Y., Sajid, M., Shah, S.R. and Mubasha, A. (2018), "Experimental and numerical investigation of the energy harvesting flexible flag in the wake of a bluff body", Wind Struct., 26(5), 279-292. https://doi.org/10.12989/was.2018.26.5.279.
  14. Sirohi, J. and Mahadik, R., (2011), "Piezoelectric wind energy harvester for low-power sensors", J. Intel. Mat. Syst. Struct., 22(18), 2215-2228. https://doi.org/10.1177/1045389X11428366.
  15. Sousa, V.C., de M Anicezio, M., De Marqui, Jr, C. and Erturk, A., (2011), "Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment", Smart Mater. Struct., 20(9), 094007. https://doi.org/10.1088/0964-1726/20/9/094007.
  16. Stephen, N.G. (2006), "On energy harvesting from ambient vibration", J. Sound Vib., 293(1-2), 409-425. https://doi.org/10.1016/j.jsv.2005.10.003.
  17. Tsushima, N. and Su, W. (2016), "Modeling of highly flexible multifunctional wings for energy harvesting", J. Aircraft, 53(4), 1033-1044. https://doi.org/10.2514/1.C033496.
  18. Usman, M., Hanif, A., Kim, I.H. and Jung, H.J. (2018), "Experimental validation of a novel piezoelectric energy harvesting system employing wake galloping phenomenon for a broad wind spectru", Energy, 153, 882-889. https://doi.org/10.1016/j.energy.2018.04.109.
  19. Vatansever, D., Hadimani, R.L., Shah, T. and Siores, E. (2011), "An investigation of energy harvesting from renewable sources with PVDF and PZT", Smart Mater. Struct., 20(5), p.055019. https://doi.org/10.1088/0964-1726/20/5/055019.
  20. Zhao, L. and Yang, Y. (2017), "On the modeling methods of smallscale piezoelectric wind energy harvesting", Smart Struct. Syst., 19(1), 67-90. https://doi.org/10.12989/sss.2017.19.1.067.