• Title/Summary/Keyword: Air pollution particle

Search Result 297, Processing Time 0.033 seconds

Direction for the management of air pollutants based on health risk in Korea (위해성을 고려한 대기오염물질의 관리 방향)

  • Kim, Young Ju;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.43-52
    • /
    • 2017
  • Policy direction for the management of air quality in Korea has been on the reduction of the average concentrations of the criteria air pollutants such as sulfur dioxide and fine particles. However, recently, risk based management of air pollutants becomes an important issue. In this study, to develop an effective air quality management policy direction in Korea, (1) the fourth Multiple Air Toxics Exposure Study (MATES IV) carried out in the South Coast Air Quality Management District (SQAQMD) in the USA is reviewed and (2) the results are compared with in these in Seoul and (3) policy directions are suggested. It was found that (1) systematic integrated study comprising of measurement, modeling, emission inventory estimation, and risk assessment was essential to estimate the health risk of air pollutants reliably, (2) cancer risk of diesel particle was dominant over other air pollutants, and (3) health risk based emissions were different from amount based emissions. It was suggested that (1) reducing the exposure from hot spots might important to reduce health risk from air pollutants and (2) an integrated air quality management administration system is important for the efficient management of air pollution.

Spatial Distribution of Air Pollution Level inside Roadway Tunnels in Urban Area (도시 자동차도로 터널 내부의 대기오염도 공간분포 특징)

  • Park, Bo-Eun;Lee, Seung-Bok;Lee, Dong-Hun;Lee, Seung Jae;Woo, Dae-Kwang;Choi, Jae-Hyun;Jin, Hyoun-Cher;Bae, Gwi-Nam;Yun, Seong-Taek
    • Particle and aerosol research
    • /
    • v.8 no.1
    • /
    • pp.17-28
    • /
    • 2012
  • Air pollution levels of gases and aerosol particles inside the Jeongneung and Hongjimun tunnels of the Naebu express way in Seoul were investigated through on-road measurement using a mobile emission laboratory (MEL) on February 8, 2011. The concentrations of $NO_x$, $CO_2$, number concentration of particles ranging 21-560 nm, and surface area of particles deposited on a human lung almost linearly increased with increasing distance from the tunnel entrance, and decreased rapidly before the tunnel exit. This trend was observed regardless of tunnel length and driving directions, which thought to be caused by semi-transverse ventilation facilities of the tunnels. The concentration increments per 1-m distance for $NO_x$, $CO_2$, deposited particle surface area, and number of particles ranging 21-560 nm were 0.61~0.80 ppb, 0.16~0.21 ppm, $0.20{\sim}0.29{\mu}m^2/cm^3$, and 117~192 particles/$cm^3$, respectively. Average pollution levels inside the two tunnels for $CO_2$, deposited particle surface area, and number of particles >5.6 nm ranged 681~748 ppm, $246{\sim}381{\mu}m^2/cm^3$, and $2.4{\sim}6.7{\times}10^5$ particles/$cm^3$, respectively. In case of $NO_x$, the maximum concentration exceeded 1 ppm. These pollution levels inside the tunnels are much higher than those at urban background sites. This result can be utilized as basic data to evaluate the effectiveness of present ventilation system for reducing the pollution level caused by vehicles inside the tunnels.

Development of diesel particulate filter for diesel locomotives (디젤기관차용 입자상물질 배출 저감필터 연구)

  • Cho, Young-Min;Kwon, Soon-Bark;Park, Duck-Shin;Jung, Woo-Sung;Lim, In-Gwon;Park, Eun-Young;Kim, Se-Young
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.994-999
    • /
    • 2007
  • The particulate matters emitted by diesel locomotives cause serious air pollution in stations and railroad. There have been various attempt to reduce the air pollution from diesel bus or trucks. However, the air pollution from the diesel locomotives has been out of control because there has not any adaptable technology. In this study, a diesel particulate filter was developed and applied to the diesel locomotives. A 3,000 horsepower large-scale locomotive and a 1,500 horsepower middle-scale locomotive were used for the test of the filter. The particulate matter emissions before and after the treatment was monitored by a scanning mobility particle sizer and a dust monitor. As a result, it was observed that the particulate matters could be successfully removed from the emission gases by using the filter.

  • PDF