• Title/Summary/Keyword: Air pollutant dispersion

Search Result 67, Processing Time 0.021 seconds

Characteristics of Exhaust Emissions from a Heavy-duty Diesel Engine (대형디젤엔진의 오염물질 배출특성)

  • 엄명도;류정호;이종태;임철수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.20-27
    • /
    • 1999
  • The proportion of diesel vehicle is very high in this country . PM and NOx emitted from diesel-posered vehicle is severely ;affecting to be air quality . Especially, diesel particulate matters(DPM) including black smoke are hazardous air pollutants to human health and environment. In order to reduce the exhaust emissions from diesel engines, it is necessary to analyze the characteristics of exhaust emissions from diesel engines in various driving conditions. Recently, there are occasion to increase the fuel consumption rate to engine power up. So, in this study we have tested a diesel engine detached from in use -diesel vehicle and analyzed exhaust emission by driving condition and fuel dispersion rate. From this results, we will prepare the comprehensive management plan for exhaust emissions from diesel vehicles and contribute to the improvement of air pollution in urban area.

  • PDF

A Numerical Simulation of Heat Flow Field for Heat Island Effect Analysis to Air Pollutants Dispersion in Apartment Complex (아파트 단지내의 열섬효과가 대기오염물질 확산에 미치는 영향 해석을 위한 열유동장 수치모의)

  • Jang Eun-Suk
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.577-582
    • /
    • 2005
  • Enormous apartment complexes in urban areas, temporary inversion state and heat island effect occur due to the strong sunshine and weak wind speeds which hinders the dispersion of air pollutants that are emitted from neighboring areas of apartment complexes. In this study, analysis were conducted by using the Fluent code based on the CFD(Computation Fluid Dynamics), including building layout, material, building height from the ground surface, the heat, analysis of flow field in the apartment complex. It was estimated that the temporal radiation inversion phenomenon during the daytime, which was caused by the weak wind speed and higher temperatures in the upper level, contributed to the stagnation of the air pollutants in the lower layer of the apartment complex.

A Study on the Pollutant Dispersion over a Mountain Valley Region (I) : Wind Tunnel Experiments (산악 계곡지형에서의 오염확산에 관한 연구(I) :풍동실험)

  • Yoo Seong-Yeon;Shim Woo-Sup;Kim Seogcheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1050-1059
    • /
    • 2005
  • Heat and $SF_6$ gas dispersions over a complex terrain were investigated using wind tunnel. The wind speed, temperature and concentration profiles were measured for the 1/1000 scale complicated terrain model in an Eiffel type boundary layer wind tunnel with test section of 2.5m in height and 4.5m in width. The scale model was mounted on the top of a plate which can rotate with respect to the approaching wind. Dispersion processes from a continuous emission source driven by various wind direction were investigated, including plume climbing over the steep up-slope of the mountain and down-spreading toward the lower level of the valley. Extensive dispersion experiment data (wind speeds and concentration profiles) were provided for verification and validation of dispersion models. Under the identical flow and emission conditions, the independently measured profiles of the temperature and $SF_6$ concentration showed an excellent agreement which ensured the credibility of the results.

Simulation Modelling of the Pollutant Concentration in Vehicle Tunnels (차량터널 오염물질 농도 예측 시뮬레이션 모델 연구)

  • 이창우;양원철;이송희
    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.57-63
    • /
    • 1996
  • The goal of this study is to develop a simulation model of the pollutant dispersion in vehicle tunnels, which can be utilized to optimize the tunnel ventilation system. Contaminant dispersion is modelled using a FDM solution of advective diffusion equation. Taking into consideration the local vehicle emission rates by year, it is user-oriented and its logic is generalized. Therefore, differences in the ventilation scheme can be easily adapted. The results of its application to a urban tunnel show that the relative errors are 1.1~6.8% for the natural velocity, 1.3% for the traffic-induced velocity and 2.9% for the total air quantity. Simulated CO concentrations along the entire tunnel show about 13% of the relative error.

  • PDF

Estimation of Air Pollutant Emissions for the Application of Photochemical Dispersion Model in the Seoul Metropolitan Area (광화학 확산모델 적용을 위한 수도권지역의 대기오염물질 배출량 산출)

  • 이종범;김용국;김태우;방소영;정유정
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.2
    • /
    • pp.123-135
    • /
    • 1997
  • An air pollutant emission inventory system for the input preparations of photochemical dispersion model was developed. Using the system, anthropogenic emissions as well as biogenic emissions in the Seoul metropolitan area were calculated. Anthropogenic emission by fuel combustion using regional cosumption data, and the laundries and so forth was estimated. The biogenic emission was estimated based upon meteorological data and the distribution of land use type in the study area. The anthropogenic emission of pollutants was highest in Seoul, and the second highest in Inchon. TSP and $SO_2$ were found large quantities during the winter due to increased consumption of heating oil. NOx and THC were emitted without seasonal variation. Among biogenic emissions, PAR was very common while NO was the least common. PAR, OLE, and ALD2 were emitted in large volumes in coniferous forest areas, while ISOP was emitted in deciduous forest areas. Generally, most biogenic emissions increased during daytime, and peaked between oen and two o'clock. Because of strong solar radiation, emission during the summer was high. Biogenic NO emissions were found to be lower compared to anthropogenic emissons, and other VOC was indicated relatively high. In the study area, among biogenic emissions PAR was found to be 3 times, OLE 8 times,and ALD2 12 times more common than among anthropogenic emissions.

  • PDF

Sidewalk Gaseous Pollutants Estimation Through UAV Video-based Model

  • Omar, Wael;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.1-20
    • /
    • 2022
  • As unmanned aerial vehicle (UAV) technology grew in popularity over the years, it was introduced for air quality monitoring. This can easily be used to estimate the sidewalk emission concentration by calculating road traffic emission factors of different vehicle types. These calculations require a simulation of the spread of pollutants from one or more sources given for estimation. For this purpose, a Gaussian plume dispersion model was developed based on the US EPA Motor Vehicle Emissions Simulator (MOVES), which provides an accurate estimate of fuel consumption and pollutant emissions from vehicles under a wide range of user-defined conditions. This paper describes a methodology for estimating emission concentration on the sidewalk emitted by different types of vehicles. This line source considers vehicle parameters, wind speed and direction, and pollutant concentration using a UAV equipped with a monocular camera. All were sampled over an hourly interval. In this article, the YOLOv5 deep learning model is developed, vehicle tracking is used through Deep SORT (Simple Online and Realtime Tracking), vehicle localization using a homography transformation matrix to locate each vehicle and calculate the parameters of speed and acceleration, and ultimately a Gaussian plume dispersion model was developed to estimate the CO, NOx concentrations at a sidewalk point. The results demonstrate that these estimated pollutants values are good to give a fast and reasonable indication for any near road receptor point using a cheap UAV without installing air monitoring stations along the road.

Quantitative Estimation of Precipitation Scavenging and Wind Dispersion Contributions for PM10 and NO2 Using Long-term Air and Weather Monitoring Database during 2000~2009 in Korea (장기간 대기오염 및 기상측정 자료 (2000~2009)를 이용한 PM10과 NO2의 강수세정 기여율과 바람분산 기여율의 정량적 추정연구)

  • Lim, Deuk-Yong;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.325-347
    • /
    • 2012
  • Long-term air and weather data monitored during the period of 2000 to 2009 were analyzed to quantitatively estimate the precipitation scavenging and wind dispersion contributions of ambient $PM_{10}$ and $NO_2$ in Korea. Both air pollutants and meteorological data had been respectively collected from 120 stations by the Ministry of Environment and from 20 weather stations by the Korea Meteorological Administrations in all parts of Korea. To stochastically identify the relation between a meteorological factor and an air pollutant, we initially defined the SR (scavenging ratio) and the DR (dispersion ratio) to separately calculate the precipitation and wind speed effects on the removal of a specific air pollutant. We could then estimate the OSC (overall scavenging contribution) and the ODC (overall dispersion contribution) with considering sectoral precipitation and wind speed probability density distributions independently. In this study, the SRs for both $PM_{10}$ and $NO_2$ were generally increased with increasing the amounts of precipitation and then the OSCs for $PM_{10}$ and $NO_2$ were estimated by 22.3% and 15.7% on an average in Korea, respectively. However, the trend of the DR was quite different from that of SR. The DR for $PM_{10}$ was increased with increasing wind speed up to 2.5 m/s and further the DR for $NO_2$ showed a minimum in the range of $1<WS{\leq}1.5$. The ODCs for $PM_{10}$ and $NO_2$ were estimated by 14.9% and 1.0% in Korea, respectively. Finally, we have also provided an interesting case study observed in Seoul.

Characteristics of Air Pollutant Dispersion from Vehicle Emission in the Street Canyons (도심 협곡 내의 자동차에서 발생된 대기오염물질의 확산 특성)

  • 박성규;김신도;이희관
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.221-222
    • /
    • 2002
  • 대기질의 예측에는 여러 가지 물리적 또는 수치적 모델링 기술이 이용되고 있다. 최근 들어 급격한 컴퓨터의 발달과 더불어 수치모델을 이용한 예측 기술이 활발히 개발 이용되고 있다. 그러나 이러한 수치 모델링 기술은 대도시 특히, 높은 건물과 그들에 의해 형성된 도심 협곡을 고려하는 경우 현재의 수치 모델이 가지고 있는 여러 가지 가정에 의해 많은 어려움을 직면하고 있는 실정이다. (중략)

  • PDF

A Study on the Prediction of SO2 Concentration in local Circulation of Mesoscale (중규모 국지순환에서 이산화황의 농도예측에 관한 연구)

  • Lee, Hwa-Woon;Kim, Yoo-Keun;Jang, Eun-Suk
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.277-284
    • /
    • 1996
  • The Characteristics of atmospheric flow and dispersion of air pollutants in the mountainous coastal area were studied using two-dimensional model by the combination of land-sea breezes and transport. The pollutants emitted into the simulated wind field in considering with the mesoscale local circulations. The typical effects of land-sea breezes and tophography of coastal area on the dispersion are discussed in detail, and the model is proved as an useful tool to pridict real time pollutant transport by the results of application studies in Pusan, Korea where the urbanized coastal area with mountainous topography. It was found that sulfur dioxide ($SO_2$) are differently transported and concentrated as going inland by the influence of the sea breeze with topographic changes. Key words : land-sea breezes, sulfur dioxide, dispersion, coastal area.

  • PDF

Random Walk Simulation of Atmospheric Dispersion on Surface Urbanization over Complex Terrain (복잡지형에서 도시화에 따른 대기오염 확산에 관한 시뮬레이션)

  • 이순환;이화운;김유근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.2
    • /
    • pp.67-83
    • /
    • 2002
  • The coupled model (SMART) of dynamic meteorology model and particle dispersion model was developed. The numerical experiment on the relationship between change of land use and diffusion behavior in complex terrain was carried out using this model. It tried to investigate the change of particle diffusion behavior and local weather under the condition in which land-land breeze and sea breeze and mountain breeze intermingled. The numerical experiment results are as follows; 1) The more complicated local circulation field of the interaction of sea breeze, mountain breeze and Land -land breeze is formed. Then, the region circulation in which the urbanization is specific by location of the region is strengthened and is weakened. 2) Though in the region with dominant sea breeze, Land-land breeze does not appear directly, the progress of the sea wind to the inland is affected. 3) In the prediction of the air diffusion, emission high quality and accurate information of the emission site are important. That is to say, the dispersion predicting result which emission high quality and small error of the site perfectly vary for Land - land breeze in the effect may be brought about.