• Title/Summary/Keyword: Air oxidation

Search Result 959, Processing Time 0.033 seconds

Synthesis and Cathodoluminescence of Tetrapod and Multipod-shaped ZnO Nanostructures by Oxidation of Zn in Air Atmosphere (공기 중 대기압 분위기에서 Zn의 산화에 의해 생성된 Tetrapod와 Multipod 형태의 나노구조와 음극선 발광 특성)

  • Lee, Geun-Hyoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.256-260
    • /
    • 2011
  • ZnO nanostructures with tetrapod, needle and multipod shapes were synthesized without catalysts through a simple thermal oxidation of metallic Zn powder in alumina crucible under air atmosphere. X-ray diffraction data revealed that the ZnO nanostructures had wurtzite structure of hexagonal phase. Energy dispersive X-ray (EDX) spectra showed that the ZnO was of high purity. After the oxidation of Zn powder, white colored product was mainly observed and yellow colored product was observed only a very little on the surface of the oxidized source materials. The white product consisted of tetrapods, while yellow product was composed of needles and multipods. Cathodoluminescece spectra showed that the crystalline quality of tetrapods was better that those of needles and multipods.

Oxidation Behaviors of SiCf/SiC Composites Tested at High Temperature in Air by an Ablation Method

  • Park, Ji Yeon;Kim, Daejong;Lee, Hyeon-Geun;Kim, Weon-Ju;Pouchon, Manuel
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.498-503
    • /
    • 2018
  • Using the thermal ablation method, the oxidation behavior of $SiC_f/SiC$ composites was investigated in air and in the temperature range of $1,300^{\circ}C$ to $2,000^{\circ}C$. At the relatively low temperature of $1,300^{\circ}C$, passive oxidation, which formed amorphous phase, predominantly occurred in the thermal ablation test. When the oxidation temperature increased, SiO (g) and CO (g) were formed by active oxidation and the dense oxide layer changed to a porous one by vaporization of gas phases. In the higher temperature oxidation test, both active oxidation due to $SiO_2$ decomposition on the surface of the oxide layer and active/passive oxidation transition due to interfacial reaction between oxide and base materials such as SiC fiber and matrix phase simultaneously occurred. This was another cause of high temperature degradation of $SiC_f/SiC$ composites.

Selective Laser Sintering of WC-Co Mixture (텅스텐 카바이드와 코발트 혼합물의 선택적 레이저 소결)

  • 김광희;조셉비만
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.269-274
    • /
    • 2001
  • This paper describes the experimental results on direct selective laser sintering of WC-Co mixture. The experiments were carried out within an air, argon and nitrogen atmosphere. The main problem occurred during sintering within an air atmosphere was oxidation of WC-Co mixture. As the power of laser is increased and scanning speed is decreased, more severe oxidation takes place. Within an argon and nitrogen atmosphere the oxidation is reduced significantly. As the energy density is increased the thickness of the sintered layer is increased.

  • PDF

High-temperature oxidation of Ti3(Al,Si)C2 nano-laminated compounds in air

  • Lee, Hwa-Shin;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.147-148
    • /
    • 2007
  • The compound, Ti3(Al,Si)C2, was synthesized by hot pressing a powder mixture of TiCX, Al and Si. Its oxidation at 900 and 1000 oC in air for up to 50 h resulted in the formation of rutile-TiO2, -Al2O3 and amorphous SiO2. During oxidation, Ti diffused outwards to form the outer TiO2 layer, and oxygen was transported inwards to form the inner mixed layer.

  • PDF

Carbon bead-supported copper-dispersed carbon nanofibers: An efficient catalyst for wet air oxidation of industrial wastewater in a recycle flow reactor

  • Yadav, Ashish;Verma, Nishith
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.448-460
    • /
    • 2018
  • Copper nanoparticle-doped and graphitic carbon nanofibers-covered porous carbon beads were used as an efficient catalyst for treating synthetic phenolic water by catalytic wet air oxidation (CWAO) in a packed bed reactor over 10-30 bar and $180-230^{\circ}C$, with air and water flowing co-currently. A mathematical model based on reaction kinetics assuming degradation in both heterogeneous and homogeneous phases was developed to predict reduction in chemical oxygen demand (COD) under a continuous operation with recycle. The catalyst and process also showed complete COD reduction (>99%) without leaching of Cu against a high COD (~120,000 mg/L) containing industrial wastewater.

Oxidation Resistance of SPS (Spark Plasma Sintering) Sintered β-FeSi2Bodies at High Temperature (방전플라즈마 소결법으로 제작한 β-FeSi2 소결체의 고온 내산화성)

  • Chang, Se-Hun;Hong, Ji-Min;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.132-136
    • /
    • 2007
  • Oxidation resistance of sintered ${\beta}-FeSi_{2}$ was investigated at intermediate temperature range in air atmosphere. Fully dense and porous bodies of ${\beta}-FeSi_{2}$ samples were fabricated by using the Spark Plasma Sintering (SPS). They were annealed at $900^{\circ}C$ for 5days to obtain ${\beta}-FeSi_{2}$ phase. The bulk samples were oxidized at $800,\;900\;and\;950^{\circ}C$ in air atmosphere. The high temperature oxidation tests reveal that amorphous $SiO_{2}$ layer, similar to Si was formed and grew parabolically on ${\beta}-FeSi_{2}$. Accelerated oxidation is not observed as well as cracks and grain boundary oxidation. Granular ${\varepsilon}-FeSi$ was developed below the oxide layer as a result of oxidation of ${\beta}-FeSi_{2}$. Oxidation resistance of sintered ${\beta}-FeSi_{2}$ was excellent for high-temperature thermoelectric application.

Large-Scale Synthesis of Cu2O Nanowires by Thermal Oxidation Method (열 산화법을 이용한 Cu2O 나노선의 대면적 합성)

  • Lee, Geun-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.388-392
    • /
    • 2014
  • $Cu_2O$ nanowires were synthesized at large scale on copper plate by thermal oxidation in air. The effect of oxidation time and temperature on the morphology of the nanowires was examined. The oxidation time had no effect on the diameter of the nanowires, while it had a great effect on the density and the length of the nanowires. The density and the length of the nanowires increased, and then decreased, with increasing oxidation time. The oxidation temperature had a tremendous effect on the size-distribution as well as the density of the nanowires. When the oxidation temperature was $700^{\circ}C$, uniform size-distribution and high density of the nanowires was achieved. At lower and higher temperatures, the density of the nanowires was lower, and they displayed a broader size-distribution. It is suggested that the $Cu_2O$ nanowires were grown via a vapor-solid mechanism because no catalyst particles were observed at the tips of the nanowires.

The Effects of Surface Oxidation Occurring during Delivery from an Annealing Furnace to a Water Bath on the Microstructure and Tensile Properties of TWIP Steel (소둔로에서 수욕으로 이송 중 발생한 표면 산화가 TWIP 강의 미세조직과 인장 성질에 미치는 영향)

  • Oh, Seon-Keun;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.2
    • /
    • pp.57-64
    • /
    • 2020
  • In the present study, we investigated whether the surface oxidation of C-bearing TWIP steel ℃curs in the air during specimen delivery from an annealing furnace to a water bath and how the microstructure and tensile properties are influenced by surface oxidation. A cold-rolled Fe-18Mn-0.6 (wt%) steel was exposed in the air for 5 s after annealing at various temperatures (750℃, 850℃ and 1000℃) for 10 min in a vacuum, and then water-quenched. For comparison, another specimen, which had been quartz-sealed in a vacuum, was annealed at 1000℃ for 10 min and immediately water-quenched without exposure to air. The 750℃ and 850℃-annealed specimens and the quartz-sealed specimen showed a γ-austenite single phase in the entire specimen due to negligible surface oxidation. However, the 1000℃-annealed specimen exhibited a dual-phase microstructure consisting of ε-martensite and γ-austenite at the sub-surface due to decarburization. Whereas the specimens without decarburization revealed high elongations of 70-80%, the decarburized specimen exhibited a low elongation of ~40%, indicating premature failure due to cracking inside the decarburized layer with ε-martensite and γ-austenite.

Reaction Rates for the Oxidation of Pitch based Carbon Fibers in Air and Carbon Dioxide Gas

  • Roh, Jae-Seung
    • Carbon letters
    • /
    • v.4 no.4
    • /
    • pp.185-191
    • /
    • 2003
  • Two types of carbon fiber based high modulus- and isotropic-pitch were exposed to isothermal oxidation in air and $CO_2$ gas and the weight change was measured by TGA apparatus. The kinetic equation was introduced $f=1-{\exp}(-at^b)$ and the constant b was obtained in the range of 1.02~1.68 for the isotropic fiber and obtained 0.91~1.93 for the high modulus fiber respectively. In considering the effect of the atmosphere for isothermal oxidation, the value of the constant b obtained in the carbon dioxide was higher than that obtained in the air. Therefore, it was found that the pitch based carbon fiber shows sigmoidal characteristic when it is oxidized in the carbon dioxide. In addition, it was also found that $k_f = 0.5$, which was reaction constant at f = 0.5, was a very useful parameter for evaluation of the oxidation reactivity of pitch based carbon fibers. According to the consideration, it is suggested that the conversion-time curves of the pitch based carbon fibers are correlated by normalized equation $f=1-{\exp}(-A{\tau}^B)$, where ${\tau}=t/t_f= 0.5$.

  • PDF

High-temperature Oxidation of Ni-based Inconel 713 Alloys at 800-1100℃ in Air (니켈기 인코넬 713합금의 800-1100℃에서의 대기중 고온산화)

  • Lee, Dong-Bok
    • Journal of Surface Science and Engineering
    • /
    • v.44 no.5
    • /
    • pp.196-200
    • /
    • 2011
  • The Ni-based superalloy, Inconel 713, was oxidized at $800{\sim}1100^{\circ}C$ for 50 and 100 hours in air. It displayed excellent oxidation resistance, forming a few micrometer-thick scales. The major scale was ${\alpha}-Al_2O_3$. Other scales formed were $TiO_2$, $NiAl_2O_4$ and $Cr_2O_3$. Generally, uniform oxidation occurred over the alloy surface, resulting in the formation of ${\alpha}-Al_2O_3$ with and without $Cr_2O_3$. Other oxides such as $TiO_2$ and $NiAl_2O_4$ sometimes also formed. Locally, nodular oxidation occurred at the nodules that consisted of diverse alloying elements. The scales were adherent at $800^{\circ}C$. However, they spalled a little at $900{\sim}1100^{\circ}C$.