• Title/Summary/Keyword: Air monitoring sites

검색결과 150건 처리시간 0.026초

바람권역 구분을 통한 부산지역 국지바람 분석 - Part I : 기상관측 자료를 이용한 바람권역 대분류 - (Analysis of Local Wind in Busan Metropolitan area According to Wind Sector Division - Part I : Coarse Division of Wind Sector using Meteorological Observation Data -)

  • 이화운;정우식;임헌호;이귀옥;최현정;지효은;이현주;성경희;도우곤
    • 한국환경과학회지
    • /
    • 제15권9호
    • /
    • pp.835-846
    • /
    • 2006
  • In this study, climate analysis and wind sector division were conducted for a propriety assessment to determine the location of air quality monitoring sites in the Busan metropolitan area. The results based on the meteorological data$(2000{\sim}2004)$ indicated hat air temperature is strongly correlated between 9 atmospheric monitoring sites, while wind speed and direction are not. This is because wind is strongly affected by the surrounding terrain and the obstacles such as building and tree. in the next stage, we performed cluster analysis to divide wind sector over the Busan metropolitan area. The cluster analysis showed that the Busan metropolitan area is divided into 6 wind sectors. However 1 downtown and 2 suburbs an area covering significantly broad region in Busan are not divided into independent sectors, because of the absence of atmospheric monitoring site. As such, the Busan metropolitan area is finally divided into 9 sectors.

항공 및 해상 관제기술 사례연구를 통한 건설장비 관제 시스템 활용 방안에 관한 연구 (Application of Construction Equipment Fleet Management System through the Case Study of Air and Vessel Traffic Control Technology)

  • 박지수;서종원
    • 대한토목학회논문집
    • /
    • 제35권2호
    • /
    • pp.493-500
    • /
    • 2015
  • 최근 세월호사고와 관련하여 항공과 해상교통 관제센터의 중요성이 급격히 증가하고 있다. 항공, 해양 분야에서는 이미 모니터링과 관제 기술을 사용하고 있다, 하지만 복잡하고 위험한 건설현장 운영을 위한 모니터링과 관제 시스템은 아직 쓰이지 않고 있다. 모니터링/관제시스템의 역할은 건설현장에서 건설장비와 관제센터 간의 효율적인 의사소통을 요구하며, 정확한 시공과 건설현장에서의 위험요소 파악을 위한 방안을 제시해주는 역할을 필요로 한다. 따라서 본 연구는 건설장비 관제시스템의 개발을 위해 관제 시스템을 활용하고 있는 항공, 해양관제센터와의 비교를 통해 조종자와 관제센터간의 의사소통에 관하여 연구하고자 한다.

서울시 중앙버스전용차로 도입의 부가적인 대기오염 영향성 평가 (Impact of the Exclusive Median Bus Lane System on Air Pollution Concentrations in Seoul, Korea)

  • 백연주;김다울;권혜영;김영국;김선영
    • 한국대기환경학회지
    • /
    • 제34권4호
    • /
    • pp.542-553
    • /
    • 2018
  • Since many previous studies reported the health effect of air pollution and indicated traffic as a major pollution source, significant policy efforts have been made to control traffic to reduce air pollution. However, there have been few studies that evaluated such policy implementation. In Seoul, Korea, the exclusive median bus lane system was implemented in 2004, and the metropolitan government applied air pollution reduction policies such as conversion of diesel buses to compressed natural gas buses and installation of emission control devices. This paper aimed to investigate the impact of the exclusive median bus lane system on air pollution reduction. Using hourly concentrations of particulate matter ($PM_{10}$) and nitrogen dioxide ($NO_2$) measured at 131 regulatory monitoring sites in Seoul and Gyeonggi-do for 2001-2014, we calculated annual and daily average concentrations at each site. We assessed the impact of the policy using differences-in-differences analysis by annual and daily average models after adjusting for geographic and/or meteorological variables. This method divides population into treatment and control groups with and without policy application, and compares the difference between the two time periods before and after the policy implementation in the treatment group with the difference in the control group. We classified all monitoring sites into treatment and control groups using two definitions: 1) Seoul vs. Gyeonggi-do; 2) within vs. outside 300 meters from the median bus lane. Pre- and post-policy periods were defined as 2001-2005 and 2006-2014, and 2004 and 2014 in the annual and daily models, respectively. The decrease in $PM_{10}$ concentrations between the two periods across monitoring sites in the treatment group was larger by $1.73-5.88{\mu}g/m^3$ than in the control group. $NO_2$ also showed the decrease without statistical significance. Our findings suggest that an efficient public transport policy combined with pollution abatement policies can contribute to reduction in air pollution.

기존 교통량/대기질 모니터링 시스템 구축 자료를 활용한 상관성 분석 (Exploration of the Relationship between Traffic Volume and Air Quality Using Existing Monitoring Data)

  • 고준호;최유진;이세희;이태경
    • 대한교통학회지
    • /
    • 제27권5호
    • /
    • pp.29-37
    • /
    • 2009
  • 대기환경의 중요성에 대한 인식이 커지면서, 교통관리 전략 수립에 대기질 개선여부를 반영시키고자 하는 많은 노력이 진행되고 있다. 그러나, 자료수집의 어려움 등으로 인해서 교통량과 대기질의 관계를 실증적으로 파악하고자 하는 연구는 많이 찾아볼 수 없는 상황이다. 이에, 본 연구에서는 서울시에서 구축해온 2005년~2007년 3년간의 대기 및 교통 모니터링 자료들을 활용하여 그 상관성을 살펴보았다. 이를 위해 두 모니터링 시스템간의 이격거리가 반경 1km이내의 지점만을 선별하고 그룹화하여 분석을 실시하였다. 분석대상 오염물질로는 CO, NO, $NO_2$, $PM_{10}$을 그 대상으로 하였으며, 분석결과 현재 구축된 두 자료의 상관성이 전반적으로 낮은 것으로 나타났다. 그러나, 타 오염물질에 비해 $NO_2$는 상대적으로 교통량과 높은 상관관계를 보였으며, 오전시간대, 강수 다음날의 자료를 사용한 경우 그 상관성이 높아지는 것을 확인하였다.

The Nationwide NO$_2$Monitoring with Passive Sampler in Korea

  • Kim, Sun-Tae;Kim, Han-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제18권E2호
    • /
    • pp.69-77
    • /
    • 2002
  • The nationwide NO$_2$monitoring program has been carried out using the passive sampler in Korea since 1993. During the sixteenth periods of measurement, total 26,474 sites of data were collected through eight years. In this paper, the roadside NO$_2$concentration of six major cities were analyzed. As results, the most frequent NO$_2$concentration of Seoul, Incheon, and Daegu ranged from 40 to 60 ppb, and that of Pusan, Kwanju, and Daejeon was from 20 to 40 ppd. Despite that the automobile number of Incheon was less than that of Daegu and Pusan, the exceedence rate of Korean national ambient air quality standard and ninetieth percentile concentration of Incheon were almost the same level as Seoul. In addition, the mean and standard deviation of roadside NO$_2$concentration of Seoul and Incheon was also appeared to be higher than that of other cities. These results indicates that NO$_2$concentration on roadside was affected by the traffic volumes and the traffic flow conditions.

Temporal and Spatial Distribution of Particulate Carcinogens and Mutagens in Bangkok, Thailand

  • Pongpiachan, Siwatt;Choochuay, C.;Hattayanone, M.;Kositanont, C.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권3호
    • /
    • pp.1879-1887
    • /
    • 2013
  • To investigate the level of genotoxicity over Bangkok atmosphere, $PM_{10}$ samples were collected at the Klongchan Housing Authority (KHA), Nonsree High School (NHS), Watsing High School (WHS), Electricity Generating Authority of Thailand (EGAT), Chokchai 4 Police Station (CPS), Dindaeng Housing Authority (DHA) and Badindecha High School (BHS). For all monitoring stations, each sample covered a period of 24 hours taken at a normal weekday every month from January-December 2006 forming a database of 84 individual air samples (i.e. $12{\times}7=84$). Atmospheric concentrations of low molecular weight PAHs (i.e. phenanthrene, anthracene, pyrene and fluoranthene) were measured in $PM_{10}$ at seven observatory sites operated by the pollution control department of Thailand (PCD). The mutagenicity of extracts of the samples was compared in Salmonella according to standard Ames test method. The dependence of the effects on sampling time and on sampling location was investigated with the aid of a calculation of mutagenic index (MI). This MI was used to estimate the increase in mutagenicity above background levels (i.e. negative control) at the seven monitoring sites in urban area of Bangkok due to anthropogenic emissions within that area. Applications of the AMES method showed that the average MI of $PM_{10}$ collected at all sampling sites were $1.37{\pm}0.10$ (TA98; +S9), $1.24{\pm}0.08$ (TA98; -S9), $1.45{\pm}0.10$ (TA100; +S9) and $1.30{\pm}0.09$ (TA100; -S9) with relatively less variations. Analytical results reconfirm that the particulate PAH concentrations measured at PCD air quality monitoring stations are moderately low in comparison with previous results observed in other countries. In addition, the concept of incremental lifetime particulate matter exposure (ILPE) was employed to investigate the potential risks of exposure to particulate PAHs in Bangkok atmosphere.

매몰지주변 기저유출 관리 필요성 (Needs for the Management of Baseflow in the Vicinity of Burial Sites)

  • 김영준;정우혁;김건하
    • 상하수도학회지
    • /
    • 제31권3호
    • /
    • pp.219-228
    • /
    • 2017
  • Burial sites are constructed for the purpose of controlling air-born livestock diseases such as avian influenza and foot-and-mouth outbreak. As most of the burial sites are located in the agricultural land use, public concerns are mounting about soil and groundwater contamination. During precipitation events, contaminated baseflows are released from the burial sites into surface waters. Baseflow are therefore required to be managed properly, by monitoring and even by remediation means. We propose each burial sites should be regarded as a point source possibly degrade groundwater, thus be managed in watershed scale for the purpose of surface water quality conservation.

Monitoring and Analysis of Galileo Services Performance using GalTeC

  • Su, H.;Ehret, W.;Blomenhofer, H.;Blomenhofer, E.
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.235-240
    • /
    • 2006
  • The paper will give an overview of the mission of GalTeC and then concentrate on two main aspects. The first more detailed aspect, is the analysis of the key performance parameters for the Galileo system services and presenting a technical overview of methods and algorithms used. The second more detailed aspect, is the service volume prediction including service dimensioning using the Prediction tool. In order to monitor and validate the Galileo SIS performance for Open Service (OS) and Safety Of Life services (SOL) regarding the key performance parameters, different analyses in the SIS domain and User domain are considered. In the SIS domain, the validation of Signal-in-Space Accuracy SISA and Signal-in-Space Monitoring Accuracy SISMA is performed. For this purpose first of all an independent OD&TS and Integrity determination and processing software is developed to generate the key reference performance parameters named as SISRE (Signal In Space Reference Errors) and related over-bounding statistical information SISRA (Signal In Space Reference Accuracy) based on raw measurements from independent sites (e.g. IGS), Galileo Ground Sensor Stations (GSS) or an own regional monitoring network. Secondly, the differences of orbits and satellite clock corrections between Galileo broadcast ephemeris and the precise reference ephemeris generated by GalTeC will also be compared to check the SIS accuracy. Thirdly, in the user domain, SIS based navigation solution PVT on reference sites using Galileo broadcast ephemeris and the precise ephemeris generated by GalTeC are also used to check key performance parameters. In order to demonstrate the GalTeC performance and the methods mentioned above, the paper presents an initial test result using GPS raw data and GPS broadcast ephemeris. In the tests, some Galileo typical performance parameters are used for GPS system. For example, the maximum URA for one day for one GPS satellite from GPS broadcast ephemeris is used as substitution of SISA to check GPS ephemeris accuracy. Using GalTeC OD&TS and GPS raw data from IGS reference sites, a 10 cm-level of precise orbit determination can be reached. Based on these precise GPS orbits from GalTeC, monitoring and validation of GPS performance can be achieved with a high confidence level. It can be concluded that one of the GalTeC missions is to provide the capability to assess Galileo and general GNSS performance and prediction methods based on a regional and global monitoring networks. Some capability, of which first results are shown in the paper, will be demonstrated further during the planned Galileo IOV phase, the Full Galileo constellation phase and for the different services particularly the Open Services and the Safety Of Life services based on the Galileo Integrity concept.

  • PDF

중앙차선 버스 정류장과 주변지역의 대기오염 특성 비교 (Comparison of Air Pollution Characteristics in the Center Lane-Bus Stop and the Surrounding Areas)

  • 이용기;김웅수;홍순모;신은상
    • 한국대기환경학회지
    • /
    • 제30권4호
    • /
    • pp.378-386
    • /
    • 2014
  • The use of bus stop in the center lane has reduced the emissions of exhaust gas on the road due to the improvement of the traffic speed but has caused a health problem for the citizens who are waiting for the bus in the platform, and thus the air pollution control of bus stop in the center lane is emerging as a more important part. This study was conducted to investigate the air pollution degree for the center lane-bus stops in four regions using mobile air measuring vehicle, and to evaluate the characteristics of air pollution by comparing with the data measured at the urban air monitoring site close to the bus stops. In addition, the correlation analysis was performed to analyze the impact to neighboring region by vehicle exhaust gas. The regional mean concentration of nitrogen dioxide in the center lane-bus stops ranged from 0.025 to 0.043 ppm which shows from 2.5 times to 5.3 times higher than the values of urban air monitoring site selected as a control group. The regional mean concentration of ozone in the center lane-bus stops ranged from 0.023 to 0.034 ppm which shows from 3% to 28% lower than the values of urban air monitoring site selected as a control group. The concentrations of nitrogen dioxide and ozone for the sampling regions did not exceed one hour-air quality environmental standard (0.1 ppm). The mean concentration of particulate matter for four center lane-bus stops was $28{\mu}g/m^3$ which shows about 27% higher than the values of urban air monitoring site selected as a control group, and that of particulate matter did not exceed one day-air quality environmental standard ($100{\mu}g/m^3$). In the results of correlation analysis between data from center lane-bus stops and data from urban air monitoring sites, the correlation coefficient (r) of nitrogen dioxide was relatively low as 0.316 to 0.416, and the correlation coefficient was high as the distance was close and vice versa. However, the correlation coefficient of ozone ranged from 0.167 to 0.658 and the correlation coefficient was high as the distance was far and vice versa.