• Title/Summary/Keyword: Air monitoring sites

Search Result 150, Processing Time 0.031 seconds

Remote Monitoring System for Environment Measurement in Industrial Field (산업현장의 환경계측을 위한 원격 모니터링 시스템)

  • Lee, Hwa-Yeong;Park, Yong-Jun;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.25-27
    • /
    • 2022
  • Recently, with the development of the 4th industry, environmental issues such as air pollution have become serious, and in particular, a lot of air pollutants are generated in industrial sites. There are various types of air pollutants, and among them, carbon monoxide is essential for fires occurring in industrial sites, so it should be possible to monitor in real time. In addition, there is a need for a remote monitoring system that can measure various environmental factors other than air pollutants in real time. In this paper, we propose a monitoring system using wireless communication to remotely measure the industrial environment. The proposed monitoring system collects data to the Arduino of the transmitter by using a carbon monoxide sensor, a combustible gas sensor, a temperature and humidity sensor, and a flame sensor, and then transmits it to the receiver using ZigBee. The transmitted data is stored in the database of the receiver Raspberry Pi, and the stored data can be monitored in real time through the monitoring system.

  • PDF

MONNTORING AIR QUALITY AND ACIDDEPOSITION IN SOUTHERN U.S.

  • Allen, Eric R.
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1997.10a
    • /
    • pp.1.1-32
    • /
    • 1997
  • Atmospheric monitoring capabilities were established in 1988 by the University of Florida at Duke forest, near Durham. NC: Cary forest, near Gainesville, FL: and Austin forest, near Nacogdoches, TX. Continuous (hourly averaged) measurements of air quality (ozone, nitrogen oxides and sulfur dioxide) and meteorological variables were made at these three low elevation (< 200 meters), rural locations in the southeastern U.S. for more than three years. During the same period at these sites wet and dry acid deposition samples were collected and analyzed on an event and weekly basis, respectively The monitoring locations were selected to determine actual atmospheric exposure indices for southern pine species in support of on-site surrogate exposure chamber studies conducted by Southern Commercial Forest Research Cooperative (SCFRC) investigators. Daily and quarterly averaged ozone maxima were higher (55 ppb) at the northernmost site in the network (Duke forest) in the second and third quarters (spring and summer seasons) and lower (35 ppb) in the first and fourth quarters (winter and fall seasons), when compared to ozone levels at the two southernmost sites (Cary and Austin forests). Seasonal ozone levels at the latter two sites were similar Nitrogen oxieds and sulfur dioxide levels were insignificant (< 5 ppb) most of the time at all sites, although soil emissions of NO at two sites were found to influence nighttime ozone concentrations. Typical maximum quarterly and annual aggregate ozone exposure indices were significantly higher at Duke forest (92.5/259 ppm-hr) than those values observed at the two southern sites (65.6/210 ppm-hr). Acid deposition (wet and dry) components concentrations and deposition fluxes observed at the Duke forest, NC piedmont site, were generally greater, dependent on site and season, than corresponding variables measured at either of the two southern coastal plain sites (Cary and Austin forests). Acid deposition variables observed at the latter two sites were remarkably similar, both qualitatively and quantitatively, although the sites were located 1300 km apart. A comparison of deposition fluxes of elemental nitrogen (NO3, NH4') and sulfur (5042-, SO3) components in wet and dry forms indicated that wet deposition accounts for approximately 70% of the total nitrogen and 73% of the total sulfur input on an annual equivalent basis at all sites.

  • PDF

Comparison of Ambient Real-Time PM2.5 Concentrations at Major Roadside with on those at Adjacent Residential Sites in Seoul Metropolitan City (서울시 도로변지역과 인근 주거 밀집지역의 실시간 대기 중 PM2.5농도 비교)

  • Yun, Dongmin;Kim, Bokyeong;Lee, Dongjae;Lee, Seonyeob;Kim, Sungroul
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.875-882
    • /
    • 2015
  • In 2013, International Agency for Research on Cancer (IARC) concluded that outdoor air pollution is carcinogenic to humans, with the particulate matter component of air pollution most closely associated with sufficient evidence of increased cancer incidence by exposure to particulate matter component of air pollution. Motor vehicles are one of a major emission sources of fine particle ($PM_{2.5}$) in urban areas. A large number of epidemiological studies have reported a positive association of morbidity or mortality with distance from the roadside. We conducted this study to assess the association of $PM_{2.5}$ concentrations measured at roadside hotspots with those at adjacent residential sites using real-time $PM_{2.5}$ monitors. We conducted real-time $PM_{2.5}$ measurements for rush hour periods (08:00~10:00 and 18:00~20:00) at 9 roadside air monitoring Hotspot sites in metropolitan Seoul over 3 weeks from October 1 to 21, 2013. Simultaneous measurements were conducted in residential sites within a 100 m radius from each roadside air monitoring site. A SidePak AM510 was used for the real-time $PM_{2.5}$ measurements. Medians of roadside $PM_{2.5}$ concentrations ranged from $9.8{\mu}g/m^3$ to $38.3{\mu}g/m^3$, while corresponding median values at adjacent residential sites ranged from $4.4{\mu}g/m^3$ to $37.3{\mu}g/m^3$. $PM_{2.5}$ concentrations of residential sites were 0.97 times of hotspot roadside sites. Distributions of $PM_{2.5}$ concentrations in roadside and residential areas were also very similar. Real-time $PM_{2.5}$ concentrations at residential sites, (100 m adjacent), showed similar levels to those at roadside sites. Increasing the distance between roadside and residential sites, if needed, should be considered to protect urban resident populations from $PM_{2.5}$ emitted by traffic related sources.

A Commentary on Air Pollution Monitoring Programs in Korea

  • Ghim, Young-Sung;Kim, Jin-Young;Shim, Shang-Gyoo;Moon, Kill-Choo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E1
    • /
    • pp.21-28
    • /
    • 2002
  • Air quality issues in Korea rapidly changed at the beginning of the 1990s from primary to secondary pollutants starting in Seoul, the capital of Korea. The present frame of national air pollution monitoring networks was established between the end of the 1980s and the beginning of the 1990s. Background monitoring was initiated in the middle of the 1990s in response to increasing public concern about the long-range transport of air pollutants. Apart from the national monitoring, both routine and intensive measurements of fine particles have been made for research purposes since the middle of the 1990s at several background sites. However, air pollution monitoring in urban areas for other purposes was relatively scarce as national monitoring has been concentrated in these areas. Although ozone pollution has become a significant issue in major metropolitan areas every summer, only a little information on ozone precursors is available. During the past few years, the number of national monitoring stations has greatly increased. The government has a plan to gradually expand monitoring items as well as stations. It is anticipated that highly detailed information on both photochemical reactants and products will be available within the next several years. More emphasis will be placed on toxic substances based on risk assessment in monitoring for both research and policy making.

Analysis on Air Quality Characteristics through Air Quality Monitoring Stations in urban Background and High Altitude in 2005~2006 in Seoul (서울시의 2005~2006년 도시배경 및 상층측정망의 대기질 특성 분석)

  • Yoo, Seung-Sung;Jeon, Jae-Sik;Jung, Kweon;Shin, Eun-Sang;Jung, Bu-Jeon;Ryu, Ri-Na;Woo, Jung-Hun;Sunwoo, Young
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 2011
  • The results of comparing $PM_{10}$ concentration between 'Namsan' and 'Yongsan-gu' air quality monitoring stations show similar values with averaged concentration in the whole Seoul. The correlation factors in both sites were 0.865, 0.828 in 2005, 2006, respectively. For 'Bukhansan' and 'Gangbuk-gu' air quality monitoring stations, different from the results mentioned above, they showed clear differences as altitude changes. PM10 concentration in 'Bukhansan' monitoring stations was 10 ${\mu}g/m^3$ lower than 'Gangbuk-gu' monitoring station which is located near the ground. Also, averaged PM10 concentration in 'Bukhansan' and 'Gangbuk-gu' monitoring stations was lower than that in the whole Seoul. When comparing $NO_2$ concentration between 'Namsan' and 'Yongsan-gu' monitoring stations, $NO_2$ concentration in 'Namsan' monitoring station was lower than 'Yongsan-gu' monitoring station. For $NO_2$ concentration in 'Bukhansan', 'Gangbuk-gu' and 'the whole Seoul', there were the same pattern in 'Gangbuk-gu' and the 'the whole Seoul' and low values in 'Bukhansan' monitoring station. The correlation factors of $NO_2$ concentration in 'Bukhansan' and 'Gangbukgu' was 0.525, 0.549 in 2005, 2006, respectively, which stands for low correlationship.

An Analysis of Wind Field around the Air Quality Monitoring Station in the Urban Area by Using the Envi-met Model (Envi-met 모델을 이용한 도심지역 대기오염측정망 주변의 바람장 분석)

  • Kim, Min-Kyoung;Lee, Hwa Woon;Dou, Woo-Gon;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.941-952
    • /
    • 2009
  • The urban microscale wind field around the air quality monitoring station was investigated in order to check how a building complex influences it. For this study as the high density areas Jwa-dong and Yeonsan-dong monitoring sites in Busan were chosen. As the direction of inflow which is perpendicular to the building of the monitoring station was expected to cause the considerable variation of the wind field, that direction was selected. The model Envi-met was used as the diagnostic numerical model for this study. It is suitable for this investigation because Envi-met has the microscale resolution. After simulating it, on the leeward side around a building complex the decrease of flow velocity and some of vortexes or circulation area were discovered. In addition, on the edge of the top at the building and at the back of the building the upward flow was developed. If the sampling hole of monitoring site were located in this upward flow, it would be under the influence of upward flow from the near street.

The Effect of Traffic Volume on the Air Quality at Monitoring Sites in Gwangju (광주광역시 대기오염측정소 주변 교통량이 대기질에 미치는 영향)

  • Lee, Dae-Haeng;An, Sang-Su;Song, Hyeong-Myeong;Park, Ok-Hyun;Park, Kang-Soo;Seo, Gwang-Yeob;Cho, Young-Gwan;Kim, Eun-Sun
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.3
    • /
    • pp.204-214
    • /
    • 2014
  • Objectives: Vehicular emissions are one of the main sources of air pollution in urban areas. Correlation analysis was conducted between air pollutants and traffic volume in order to identify causes of air pollution in Gwangju. Methods: Using traffic volumes and air quality monitoring data from 2002 to 2012 from nine stations (seven urban areas, two roadside areas), especially at three sites where traffic volumes were high, the correlation coefficients were obtained between air pollutants as PM-10 (particulate matter), $NO_2$, $SO_2$, CO and $O_3$ at the stations and traffic volumes near the air monitoring stations. Results: Due to traffic volume and distance between the station and the traffic road, concentrations of pollutants at roadside areas were higher than at urban areas, with the exception of $O_3$. The concentration of $O_3$ showed statistically significance with those of other gas materials as $NO_2$, $SO_2$, and CO in winter (p<0.001) and spring (p<0.05). During the period of October 7 to 20, 2012, excluding periods of yellow dust, smog and rainy season, the ratio of $NO/(NO+NO_2)$ showed the highest value 0.57 and 0.40 at Unam and Chipyeong of two roadside stations, followed by 0.35 at Nongseong with vehicular effects. The correlation coefficient between traffic volume and $O_3$, CO, $NO_2$ became higher when the data on mist and haze days were excluded, than when all hourly data were used in that period, at the three sites of Unam, Chipyeong, and Nongseong. Conclusions: Air quality showed a considerable effect from vehicles at roadside areas compared to in urban areas. Air pollutant diminishment strategies need to be aggressively adopted in order to protect atmospheric environment.

Investigation on the Validation for Designating Air Quality Control Region among Provincial Cities by the Data Measured with Air Quality Monitoring Network (대기오염 측정 자료에 의한 지방도시의 대기환경규제지역 설정에 관한 타당성 검토)

  • Yu, Mee-Seon;Yang, Sung-Bong;Woo, Kyung-Bin
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.181-190
    • /
    • 2016
  • Regional air quality regulation is a system that allows the Minister of Environment to designate the local area as air quality control region where the concentrations of air pollutants are exceeding the environmental standards, and the local governments that administrate the regulated area have to develop and practise a plan for reducing the air pollutants. From the data observed yearly by the monitoring stations in 8 provincial cities with more than 0.5 million people was judged the compliance with air quality standards in each municipality for the period of 2003 to 2013. As the result of investigation on air pollutants concentrations of each city, it was found that there was no station that exceeds the ambient air quality standards of CO, $SO_2$ and 24-hour $NO_2$. But all municipalities exceeded the standards of 8-hour $O_3$, annual and 24-hour $PM_{10}$, and therefore 8 municipalities can be designated to be under the local air regulation. For the annual $NO_2$ were the monitoring sites necessary requirements for designation of the air quality regulation region in Cheongju, Cheonan, Daejeon and Gwangju area. Incase of 1-hour $O_3$, some of stations in Pohang, Cheongju, Cheonan and Changwon area were over the designation standards for the air quality control region.

Analysis of Local Wind in Busan Metropolitan Area According to Wind Sector Division - Part III : Division of Local Wind Sector over Busan - (바람권역 구분을 통한 부산지역 국지바람 분석 - Part III : 부산지역 상세 바람권역 구분 -)

  • Jung, Woo-Sik;Lee, Hwa-Woon;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.311-321
    • /
    • 2007
  • We have investigated coarse wind sectors in Busan metropolitan area and simulated detailed wind field using local atmospheric circulation model, RAMS in preceding studies (Part I, Part II). In this study, we divided and analyzed local wind sector in Busan according to the preceding results. We found that Busan metropolitan area is divided into 2 or 3 local wind sector in each coarse wind sector. The 9 coarse wind sectors were classified into 20 local wind sectors in total. But three local wind sectors were finally excluded because of these sectors were located on the complex hill area and the sea. Local wind sectors, therefore, in Busan metropolitan area were defined as 17 regimes. We assessed the location of air qualify monitoring sites at Busan metropolitan area using the information of these wind sectors. Most of these were located at proper points, but 6 sites were placed at 3 local wind sectors as a couple and no site was set up at 3 other sectors. Hence the location of these sites was in need of rearrange.

Sensibility Study for PBL Scheme of WRF-CMAQ (PBL Scheme에 대한 WRF-CMAQ 민감도 분석)

  • Moon, Nan-Kyoung;Kim, Soon-Tae;Seo, Ji-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.791-804
    • /
    • 2011
  • Numerical simulations were carried out to investigate the impact of PBL (Planetary boundary layer) scheme implemented in WRF on the result of meteorological fields and CMAQ modeling. 25-day period, representing high ozone concentration, was selected for the simulations. The three WRF domains covered East Asia region, Korean Peninsula and Seoul metropolitan area. The sensitivity of WRF-CMAQ modeling to the various PBL schemes was assessed and quantified by comparing model output and against observation from the meteorological and the air quality monitoring network within the domain. The meteorological variables evaluated included temperature, wind speed and direction over surface sites and upper air sounding sites. The CMAQ variables included gaseous species $O_3$ and $NO_x$ over monitoring stations. Although difference of PBL schemes implemented in WRF, they did not appreciably affect the WRF and CMAQ performance. There are partially differences between non-local and local mixing scheme, but are not distinct differences for the results of weather and air quality. It is suggested that impact of parameterization of vertical eddy diffusivity scheme in CMAQ also need to be researched in the future study.