• Title/Summary/Keyword: Air migration

Search Result 78, Processing Time 0.03 seconds

A Study on the Effect of Entrained Air Contents of Marine Concrete on the Properties of Freeze-Thawing Resistance and Chloride Migration (해양콘크리트의 연행공기량이 동결융해 저항성 및 염화물 확산특성에 미치는 영향에 관한 연구)

  • Park Sang Joon;Yoo Jae Kang;Shin Hong Chul;Kim Young Jin;Park Hyung Keun;Lim Hyun Chil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.483-486
    • /
    • 2005
  • This study investigates the effect of air contents on concrete properties, compressive strength, chloride migration coefficient and freeze-thaw resistance. Chloride migration and freeze-thawing test conducted in accordance with NT-BUILD 492 and pr-EN 12390-9, respectively. As a result, compressive strength reduced with air contents increase, but chloride migration coefficient more influenced by the water-binder ratios than air contents. Air contents of hardened concrete measured half times that of fresh concrete after mixing. Also, concrete scaling decreased with air contents increased.

  • PDF

Interface Migration lnduced by Nonstoichiometry and Dielectric Property of Nb-doped $SrTiO_3$ (Nonstoichiometry에 의한 Nb-doped $SrTiO_3$의 계면 이동과 유전 성질)

  • Jeon, Jae-Ho;Gang, Seok-Jung
    • 연구논문집
    • /
    • s.25
    • /
    • pp.185-192
    • /
    • 1995
  • The solid/liquid interface migration in Nb-doped $SrTiO_3$ and its effect on dielectric properties have been investigated. The specimen sintered in air shows no migration during oxide infiltration treatment in air, whereas the specimen sintered in $5H_2-95N_2$ shows appreciable migration during similar infiltration. In the migrated layers of the specimen sintered in a reducing atmosphere, no cations of the infiltrants are detected by wavelength dispersive spectroscopy. These results show that nonstoichiometry due to the atmosphere change can induce the interface migration as in the case of frequently observed migrations due to solute concentration change. The driving force for the migration is discussed in terms of the coherency strain energy in a thin diffusional oxidized layer of the receding grain. The interface migration caused by nonstoichiometry could be suppressed by preoxidizing grain surfaces before oxide infiltration treatment. The suppression of migration increased the effective dielectric constant of the material.

  • PDF

AN ANALYSIS OF THE EFFECT OF HYDRAULIC PARAMETERS ON RADIONUCLIDE MIGRATION IN AN UNSATURATED ZONE

  • Kim, Gye-Nam;Moon, Jei-Kwon;Lee, Kune-Woo
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.562-567
    • /
    • 2010
  • A One-Dimensional Water Flow and Contaminant Transport in Unsaturated Zone (FTUNS) code has been developed in order to interpret radionuclide migration in an unsaturated zone. The pore-size distribution index (n) and the inverse of the air-entry value ($\alpha$) for an unsaturated zone were measured by KS M ISO 11275 method. The hydraulic parameters of the unsaturated soil are investigated by using soil from around a nuclear facility in Korea. The effect of hydraulic parameters on radionuclide migration in an unsaturated zone has been analyzed. The higher the value of the n-factor, the more the cobalt concentration was condensed. The larger the value of $\alpha$-factor, the faster the migration of cobalt was and the more aggregative the cobalt concentration was. Also, it was found that an effect on contaminant migration due to the pore-size distribution index (n) and the inverse of the air-entry value ($\alpha$) was minute. Meanwhile, migrations of cobalt and cesium are in inverse proportion to the Freundich isotherm coefficient. That is to say, the migration velocity of cobalt was about 8.35 times that of cesium. It was conclusively demonstrated that the Freundich isotherm coefficient was the most important factor for contaminant migration.

A Study on Numerical Calculation of Gas Migration from the Sanitary Landfill (쓰레기 매립지에서 가스유출 계산에 관한 연구)

  • 이해승
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.43-51
    • /
    • 1998
  • This study presents a numerical method for calculating gas flow around a sanitary landfill gas vent, when gas flows by pressure. The method described is a three-dimensional compartmental model and includes methods to determine the dimensions for the model. Using the numerical method, controll of press and gases flowing out to the air through final cover soil, and degine of sanitary landfill gas vents.

  • PDF

Experimental and Theoretical Studies on the Dynamic Characteristics During Speed Down of Inverter Heat Pump

  • Hwang, Yoon-Jei;Kim, Ho-Young
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.1
    • /
    • pp.29-39
    • /
    • 2000
  • A series of tests were performed to verify the transient characteristics of heat pump in heating and cooling mode when operating speed was varied over the 30 to 102Hz. One of the major issues that has not been addressed so far is transient characteristics during speed modulation. The model for cycle simulation has been developed to predict the cycle performance under conditions of decreasing drive frequency and the results of the theoretical study were compared with the results of the experimental study. The simulated results were in good agreement with the experimental result within 10%. The transient cycle migration of the liquid state refrigerant causes significant dynamic change in system. Thus, the migration of refrigerant was the most important factor whenever do experimental results analysis or develop simulation model.

  • PDF

Radiological Assessment of Environmental Impact of the IF-System Facility of the RAON

  • Lee, Cheol-Woo;Whang, Won Tae;Kim, Eun Han;Han, Moon Hee;Jeong, Hae Sun;Jeong, Sol;Lee, Sang-jin
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.2
    • /
    • pp.58-65
    • /
    • 2021
  • Background: The evaluation of skyshine distribution, release of airborne radioactive nuclides, and soil activation and groundwater migration were required for radiological assessment of the impact on the environment surrounding In-Flight (IF)-system facility of the RAON (Rare isotope Accelerator complex for ON-line experiment) accelerator complex. Materials and Methods: Monte Carlo simulation by MCNPX code was used for evaluation of skyshine and activation analysis for air and soil. The concentration model was applied in the estimation of the groundwater migration of radionuclides in soil. Results and Discussion: The skyshine dose rates at 1 km from the facility were evaluated as 1.62 × 10-3 μSv·hr-1. The annual releases of 3H and 14C were calculated as 9.62 × 10-5 mg and 1.19 × 10-1 mg, respectively. The concentrations of 3H and 22Na in drinking water were estimated as 1.22 × 10-1 Bq·cm-3 and 8.25 × 10-3 Bq·cm-3, respectively. Conclusion: Radiological assessment of environmental impact on the IF-facility of RAON was performed through evaluation of skyshine dose distribution, evaluation of annual emission of long-lived radionuclides in the air and estimation of soil activation and groundwater migration of radionuclides. As a result, much lower exposure than the limit value for the public, 1 mSv·yr-1, is expected during operation of the IF-facility.

Microstructure Evolution in Sintered CoO under Electric Fields (CoO 소결체의 전기장에 의한 미세구조 변화)

  • 이기춘;유한일
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.912-918
    • /
    • 1992
  • Microstructure evolution including morphological change in the vicinity of the electrodes, porosity change and grain boundary migration was observed in polycrystalline CoO subject to electric fields at 1100 and 121$0^{\circ}C$ in air. At the cathode, the transported cations react with oxygen in the surrounding to form new lattices, while, at the anode, the reverse reaction occurs leading to lattice annihilation. Lattice formation also takes place at the surface of pores near the cathode inducing pore-filling effect. Grain boundary migration was found bo be enhanced or retarded depending on the field direction. It is therefore implied that the driving force of grain boundary migration is the vectorial sum of the curvature-induced chemical potential gradient and the electric field applied.

  • PDF

A Dynamic Adjustment Method of Service Function Chain Resource Configuration

  • Han, Xiaoyang;Meng, Xiangru;Yu, Zhenhua;Zhai, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2783-2804
    • /
    • 2021
  • In the network function virtualization environment, dynamic changes in network traffic will lead to the dynamic changes of service function chain resource demand, which entails timely dynamic adjustment of service function chain resource configuration. At present, most researches solve this problem through virtual network function migration and link rerouting, and there exist some problems such as long service interruption time, excessive network operation cost and high penalty. This paper proposes a dynamic adjustment method of service function chain resource configuration for the dynamic changes of network traffic. First, a dynamic adjustment request of service function chain is generated according to the prediction of network traffic. Second, a dynamic adjustment strategy of service function chain resource configuration is determined according to substrate network resources. Finally, the resource configuration of a service function chain is pre-adjusted according to the dynamic adjustment strategy. Virtual network functions combination and virtual machine reusing are fully considered in this process. The experimental results show that this method can reduce the influence of service function chain resource configuration dynamic adjustment on quality of service, reduce network operation cost and improve the revenue of service providers.

The Effect of Entrained Air Contents on the Properties of Freeze-thaw Deterioration and Chloride Migration in Marine Concrete (연행 공기량이 해양콘크리트의 동결융해 및 염화물 확산특성에 미치는 영향)

  • Park, Sang-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.161-168
    • /
    • 2008
  • The freeze-thaw deterioration and chloride attack, which are the typical degradation factors for durability of marine concrete, are significantly affected by pore structures in terms of penetration and diffusion. These pore structures of concrete are closely related to the types and amount of AE agent, used to guarantee the resistance of freeze-thaw deterioration, and the elapsed time before concrete pouring. This paper evaluates the durability of concrete based on the results of tests on cylinder specimens and core specimens from mock-up members with different air content of 4~6% and 8~10%, respectively. According to the test results, the air content of hardened concrete is 2.5~5.2% at 7 days and 2.4~5.1% at 28 days. These air contents are about half of the initial values just after the concrete mixing. Judging from the amount of scale after the freeze-thaw test completed, air content of 8~10% is slightly more beneficial against the deterioration of concrete than air content of 4~6%. Meanwhile, the core specimens from mock-up members exhibit somewhat unfavorable freeze-thaw deterioration and chloride migration characteristic compared with the cylinder specimens tested in the laboratory under the same mixing condition, as to show 106% in freeze-thaw test and 160% in chloride diffusion coefficient test, respectively.