• Title/Summary/Keyword: Air layer effect

Search Result 452, Processing Time 0.029 seconds

Experiments on Sedimentation of Particles in a Water Pool with Gas Inflow

  • Kim, Eunho;Jung, Woo Hyun;Park, Jin Ho;Park, Hyun Sun;Moriyama, Kiyofumi
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.457-469
    • /
    • 2016
  • During the late phase of severe accidents of light water reactors, a porous debris bed is expected to develop on the bottom of the flooded reactor cavity after breakup of the melt in water. The geometrical configuration, i.e., internal and external characteristics, of the debris bed is significant for the adequate assessment of the coolability of the relocated corium. The internal structure of a debris bed was investigated experimentally using the DAVINCI (Debris bed research Apparatus for Validation of the bubble-Induced Natural Convection effect Issue) test facility. Particle sedimentation under the influence of a two-phase natural convection flow due to the decay heat in the debris bed was simulated by dropping various sizes of particles into a water vessel with air bubble injection from the bottom. Settled particles were collected and sieved to obtain the particle mass, size distribution in the radial and axial positions, and the bed porosity and permeability. The experimental results showed that the center part of the particle bed tended to have larger particles than the peripheral area. For the axial distribution, the lower layer had a higher fraction of larger particles. As the sedimentation progressed, the size distribution in the upper layers can shift to larger sizes because of the higher vapor generation rate and stronger flow intensity.

The effect of misorientation-angle dependence of p-GaN layers grown on r-plane sapphire substrates

  • Son, Ji-Su;Kim, Jae-Beom;Seo, Yong-Gon;Baek, Gwang-Hyeon;Kim, Tae-Geun;Hwang, Seong-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.171-171
    • /
    • 2010
  • GaN 기반 Light emitting diodes(LEDs)의 p-type doping layer는 일반적으로 hole을 발생시키는 acceptor로 Mg이 사용하되고 있다. 보통 Mg이 도핑된 p-type GaN은 >$1\;{\Omega}{\cdot}cm$의 저항이 존재하는데 그 이유는 Mg의 열적 이온화를 위한 activation 에너지가 높아서 상온에서 valence band의 hole concentration는 전체 억셉터 농도의 1%가 되지 않기 ��문이다. 본 논문에서는 높은 hole 농도를 얻기 위해서 metalorganic chemical-vapor deposition (MOCVD)를 장비를 사용하여 사파이어 기판의 misorientation-angle에 따른 p-type a-plane(11-20) GaN 특성을 분석하였다. misorientation-angle은 c축 방향으로 $+0.15^{\circ}$, $-0.15^{\circ}$, $-0.2^{\circ}$, $-0.4^{\circ}$ off된 r-plane(1-102) 사파이어 기판 을 사용하였다. p-type 도핑물질로 bis-magnesium (Cp2Mg) 소스를 사용하였고 성장 과정중 발생하는 hydrogen passivation으로 인한 Mg-H complexes현상을 해결하기위해 conventional furnace annealing (CFA)와 rapid thermal annealing (RTA)를 이용하여 열처리 공정을 진행하였다. 열처리 공정은 Air와 N2 분위기에서 $650^{\circ}C$에서 $900^{\circ}C$ 사이의 다양한 온도에서 수행하였고 Hall 측정을 위해 Ni을 전극 물질로 사용하였다. 상온에서 Accent HL5500IU Hall system을 사용하여 hole concentration, mobility, specific resistance을 측정하였다. 열처리 공정 후 Hall측정 결과 $+0.15^{\circ}$, $-0.15^{\circ}$, $-0.2^{\circ}$, $-0.4^{\circ}$ off된 각 샘플들은 온도, 시간, 분위기에 따라 hole concentration ($7.4{\times}10^{16}cm^{-3}{\sim}6{\times}10^{17}cm^{-3}$), mobility(${\mu}h=\;1.72\;cm^2/V-s\;{\sim}15.2\;cm^2/V-s$), specific resistance(4.971 ohm-cm ~8.924 ohm-cm) 가 변화됨을 확인 할 수 있었다. 또한 광학적 특성을 분석하기 위해 Photoluminescence (PL)을 측정하였다.

  • PDF

Effect of addition of a catalystic layer on Denitrification System efficiency in a 500 MW Coal-fired Power Plant (500 MW 석탄화력발전소 촉매단추가에 따른 탈질설비 효율에 미치는 영향)

  • Lee, Sang Soo;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.17 no.1
    • /
    • pp.58-66
    • /
    • 2021
  • The government has recently come up with a policy to tighten regulations on air pollutant emissions due to public concerns over the emission of pollutants such as fine dust. The coal-fired power plant is speeding up the improvement of the performance of environmental facilities, and this paper deals with the cases of performance improvement by adding a catalyst to the 500 MW standard coal-fired power DeNox system, and examines the change in the performance factors according to the addition of catalysts and the efficiency of NOx removal. The DeNOx efficiency before and after improvement increased from 80% to 88%, and the conversion rate of SO2/SO3, ammonia slip which are performance factors satisfied the design assurance value, but exceeded the design assurance value for differential pressure. At the same time, the ammonia slip concentration and differential pressure items increased as the NOx removal efficiency increased, resulting in the need for management and improvement.

Interpretation and Comparison of High PM2.5 Characteristics in Seoul and Busan based on the PCA/MLR Statistics from Two Level Meteorological Observations (두 층 관측 기상인자의 주성분-다중회귀분석으로 도출되는 고농도 미세먼지의 부산-서울 지역차이 해석)

  • Choi, Daniel;Chang, Lim-Seok;Kim, Cheol-Hee
    • Atmosphere
    • /
    • v.31 no.1
    • /
    • pp.29-43
    • /
    • 2021
  • In this study, two-step statistical approach including Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) was employed, and main meteorological factors explaining the high-PM2.5 episodes were identified in two regions: Seoul and Busan. We first performed PCA to isolate the Principal Component (PC) that is linear combination of the meteorological variables observed at two levels: surface and 850 hPa level. The employed variables at surface are: temperature (T2m), wind speed, sea level pressure, south-north and west-east wind component and those at 850 hPa upper level variables are: south-north (v850) and west-east (u850) wind component and vertical stability. Secondly we carried out MLR analysis and verified the relationships between PM2.5 daily mean concentration and meteorological PCs. Our two-step statistical approach revealed that in Seoul, dominant factors for influencing the high PM2.5 days are mainly composed of upper wind characteristics in winter including positive u850 and negative v850, indicating that continental (or Siberian) anticyclone had a strong influence. In Busan, however, the dominant factors in explanaining in high PM2.5 concentrations were associated with high T2m and negative u850 in summer. This is suggesting that marine anticyclone had a considerable effect on Busan's high PM2.5 with high temperature which is relevant to the vigorous photochemical secondary generation. Our results of both differences and similarities between two regions derived from only statistical approaches imply the high-PM2.5 episodes in Korea show their own unique characteristics and seasonality which are mostly explainable by two layer (surface and upper) mesoscale meteorological variables.

The Mechanical Properties and Biocompatibility of Functionally Graded Coatings(FGC) of Hydroxyapatite(HA) and Metallic Powders - Functionally Gradient Coatings of Thermal Spray in Air- (Hydroxyapatite (HA)와 금속 분말 경사 코팅의 기계적 특성 및 생체 적합성 - 대기 열용사 경사코팅 -)

  • Kim, Eun-Hye;Kim, Yu-Chan;Han, Seung-hee;Yang, Seok-Jo;Park, Jin-Woo;Seok, Hyun-Kwang
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.13-20
    • /
    • 2009
  • This work presents functionally graded coatings (FGC) of hydroxyapatite (HA) and metallic powders on Ti-6Al-4V implants using plasma spray coating method. HA has been the most frequently used coating material due to its excellent compatibility with human bones. However, because of the abrupt changes in thermomechanical properties between HA and the metallic implant across an interface, and residual stress induced on cooling from coating temperture to room temperature, debonding at the interface occurs in use sometimes. In this work, FGC of HA and Ti or Ti-alloy powders is made to mitigate the abrupt property changes at the interface and the effect of FGC on residual stress release is investigated by evaluating the mechanical bond strength between the implant and the HA coating layers. Thermal annealing is done after coating in order to crystallize the HA coating layer which tends to have amorphous structure during thermal spray coating. The effects of types and compositional ratio of metallic powders in FGC and annealing conditions on the bond strength are also evaluated by strength tests and the microstructure analysis of coating layers and interfaces. Finally, biocompatibility of the coating layers are tested under ISO 10993-5.

Determination of Peening Area for Finite Element Residual Stress Analysis of Ultrasonic Nanocrystal Surface Modification under Multiple Impact Conditions (초음파나노표면개질 다중충격 조건에서의 잔류응력 예측을 위한 유한요소 피닝해석 영역 결정)

  • Tae-Hyeon Seok;Seung-Hyun Park;Nam-Su Huh
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.145-156
    • /
    • 2021
  • Ultrasonic Nanocrystal Surface Modification (UNSM) is a peening technology that generates elastic-plastic deformation on the material surface to which a static load of a air compressor and a dynamic load of ultrasonic vibration energy are applied by striking the material surface with a strike pin. In the UNSM-treated material, the structure of the surface layer is modified into a nano-crystal structure and compressive residual stress occurs. When UNSM is applied to welds in a reactor coolant system where PWSCC can occur, it has the effect of relieving tensile residual stress in the weld and thus suppressing crack initiation and propagation. In order to quantitatively evaluate the compressive residual stress generated by UNSM, many finite element studies have been conducted. In existing studies, single-path UNSM or UNSM in a limited area has been simulated due to excessive computing time and analysis convergence problems. However, it is difficult to accurately calculate the compressive residual stress generated by the actual UNSM under these limited conditions. Therefore, in this study, a minimum finite element peening analysis area that can reliably calculate the compressive residual stress is proposed. To confirm the validity of the proposed analysis area, the compressive residual stress obtained from the experiment are compared with finite element analysis results.

A Study on the Horizontal and Vertical Distribution of Heavy Metal Elements in Slime Dump from Dukum Mines, Korea (덕음광산 선광광미와 주변토양의 중금속에 대한 수평.수직적인 분산에 관한 연구)

  • 박영석
    • Economic and Environmental Geology
    • /
    • v.33 no.2
    • /
    • pp.91-100
    • /
    • 2000
  • It has been more than ten years since Dukun mine was abandoned. Tailings of waste deposits and slime dumps in the abandoned Dukum mine have been left to be deserted for fifty years. The results of fifty years of neglecting are nothing short of major environmental problems. Slime dumps have been exposed to air and water in the mine over ten years and then soil profile has been formed well. Soil in the upper layer (A horizon) is the light gray color due to the leaching of cations. Soil in the lower layer (A2 horizon, 0.2∼0.3m)is tinted with reddish brown and yellowish brown color due to the development of iron oxides and iron hydroxides. Soil in the lower part of B horizon of (1.0∼3.0m) with the growth of copper and zinc oxides exposes to the bluish green, light blue, and dark gray. Ranging from 3m to 8m in depth, 85 samples were taken from 22 sampling sites with 50m intervals located on the slime dump area with hand auger and trench (open cut). As tailings was distributed, heavy metal elements extracted by the process of surface water and ground water move and disperse in to the hydrosphere. Waste dumps were distributed in and around the mine and water draining from those dumps be a potential source of contamination. Soils, thus, can be dispersed into downslope and downstream through wind and water by clastic movement. These materials may be deposited in another horizon if the water is withdrawn, or if the materials are precipitated as a result of differences in pH, or other conditions in deeper horizons. These were primarily associated with acid mine drainage. The characteristics and rate of release of acid mine drainage are influenced by various chemical and biological reactions at the source of acid generations. Prolonged extration of heavy metal elements has a detrimental effect on the agricultural land and residental area. Twenty soil samples were collected from the agricultural land in the area (0∼30 cm). Seventeen samples were also taken from the sediment in the stream running alongside the dumps. The dispersion patterns of heavy metal elements are as follows: The content of As ranged 2∼6 ppm in a horizon, 20∼125 ppm in B horizon with large amount of clay mineral is concentrated and the content of Cd ranged 1∼2 ppm in A horizon, 4∼22 ppm in B horizon. Like Cd, the content of As, Cu, Zn, Pb in B horizon is higher than that in A horizon (approximately 5∼100 times). When soil formation proceeds in stages, it is necessary to investicate the B horizon with the concentration of heavy metal and preventive measures will have to established.

  • PDF

Evaluation of Thermal Durability for Thermal Barrier Coatings with Gradient Coating Thickness (경사화 두께를 갖는 열차폐 코팅의 열적 내구성 평가)

  • Lee, Seoung Soo;Kim, Jun Seong;Jung, Yeon-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.248-255
    • /
    • 2020
  • The effects of the coating thickness on the thermal durability and thermal stability of thermal barrier coatings (TBCs) with a gradient coating thickness were investigated using a flame thermal fatigue (FTF) test and thermal shock (TS) test. The bond and topcoats were deposited on the Ni-based super-alloy (GTD-111) using an air plasma spray (APS) method with Ni-Cr based MCrAlY feedstock powder and yttria-stabilized zirconia (YSZ), respectively. After the FTF test at 1100 ℃ for 1429 cycles, the bond coat was oxidized partially and the thermally grown oxide (TGO) layer was observed at the interface between the topcoat and bond coat. On the other hand, the interface microstructure of each part in the TBC specimen showed a good condition without cracking or delamination. As a result of the TS test at 1100 ℃, the TBC with gradient coating thickness was initially delaminated at a thin part of the coating layer after 37 cycles, and the TBC was delaminated by more than 50% after 98 cycles. The TBCs of the thin part showed more oxidation of the bond coat with the delamination of topcoat than the thick part. The thick part of the TBC thickness showed good thermal stability and oxidation resistance of the bond coat due to the increased thermal barrier effect.

An Effect of $Al_{2}O_{3}$ on the Reaction between Molten Converter Slag and CaO pellet (용융전로(熔融轉爐)슬래그와 CaO펠렛의 상호반응(相互反應)에 미치는 $Al_{2}O_{3}$의 영향(影響))

  • Kim, Young-Hwan;Ko, In-Yong
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.3-9
    • /
    • 2006
  • As a basic study on the conversion of molten converter slag to the ordinary portland cement, the effects of $Al_{2}O_{3}$ addition on the interface reaction between solid CaO and molten converter slag has been studied. Alumina added converter slag whose basicity was controlled to 1 and 2 was melted and hold for 30 minutes in MgO crucible at $1500^{\circ}C$. Then sintered CaO pellet heated at the same temperature was dipped into the molten slag and held for 30minutes. After the reaction, the crucible was cooled in air and the specimen was cut off to the horizontal direction of the crucible. The dissolution rate of CaO pellet with the addition of $Al_{2}O_{3}$ was measured by the change of the radius or sintered CaO pellet and the interface layer was observed by SEM/EDX. As a result. At the basicity 2 slag, thickness of created $C_{3}S$ layer increased 3.5 times and quantity of $C_{6}AF_{2}\;or\;C_{4}AF$ phase increase 2 times than baisicy 1 slag.

A study on the differentiation of MC3T3-E1 incubated on the layer-built silica/polycaprolactone non-woven fabric produced by electrospinning (전기방사법으로 제조된 실리카/폴리카프로락톤 적층형 부직포에 배양한 골아 세포의 중식, 분화에 관한 연구)

  • AN, Min-Kuk;Kim, Kyoung-Hwa;Kim, Tae-II;Lee, Yong-Moo;Rhee, Sang-Hoon;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Han, Soo-Boo;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.1
    • /
    • pp.115-124
    • /
    • 2007
  • Silica is known as a promising osteoconductive material, and polycaprolactone is a bioactive and degradable material. The purpose of this study was to monitor the differentiation of MC3T3-E1 cells cultured on the layer-built silica/poly caprolactone non-woven fabric produced by electrospinning. Non-woven fabric (silica, polycaprolactone, PSP, SPS) was made by electrospinning and they were inserted in the 48 well cell culture plate. MC3T3-E1 cells were prepared by subculture. Cells were seeded to each well $1{\times}10^5$ concentration per well. Dulbecco's modified eagle medium with 10% FBS and 1% antibiotic-antimycotic solution was used. Confocal laser scanning microscope was taken 4 hours after incubation (95% air. 5% $CO_2$, $37^{\circ}C$). Cell proliferation was monitored by spectrophotometer on 1, 7, 14 days, and the morphology of the growing cells was observed by field emission scanning electron microscope. To monitor the differentiation of osteoblasts on the materials, MC3T3-E1 cells were incubated in 48 well culture plate after seeding with the density of $1{\times}10^5$ concentration. Then ELISA kit & EIA kit were used on to assess osteocalcin and osteopontin expression respectively. The other conditions were the same as above. MC3T3-E1 cells were proliferated well on all of the materials. There were no statistical differences among them. The osteopontin expression of silica, PSP, SPS was significantly higher than other groups on day 3 (p/0,05), but after that time, there were no statistically signigicant differences. The osteocalcin expression was significantly higher in silica and PSP than other groups on day 14. These findings show that PSP was as good as silica on the effect of osteoblast differentiation. The PSP non-woven fabric may have the possibility as bone graft materials.