• 제목/요약/키워드: Air intake system

검색결과 258건 처리시간 0.029초

가솔린 균일 예혼합 압축 착화 디젤기관의 연소 및 배기 특성에 미치는 운전조건의 영향 (Effect of Operation Condition on the Characteristics of Combustion and Exhaust Emissions in a Gasoline Fueled HCCI Diesel Engine)

  • 이창식;김명윤;황석준;김대식
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.48-54
    • /
    • 2004
  • The purpose of this work is to investigate the effect of premixing condition on the combustion and exhaust emission characteristics in a HCCI diesel engine. To from homogeneous charge before intake manifold, the premixed gasoline fuel is injected into a premixed tank by fuel injection system and the premixed gasoline fuel is ignited by direct injected diesel fuel. Experimental result shows the NOx and soot emissions are decreased linearly with the increase of premixed ratio. In the case of intake air temperature $20^{\circ}C$ with light load, the specific fuel consumptions are increased with the rise of premixed ratio and HC and CO emissions are also increased. But the intake air heating can improve the specific fuel consumption at light load condition because increased air temperature promotes the combustion of premixed mixture. In the case of high intake air temperature with high load condition, premixed fuel is auto-ignited before diesel combustion and soot emission is increased.

노즐을 적용한 흡기 매니폴드의 배출가스 고찰 (Investigation of the Exhaust gas on the Intake Manifold using Nozzle)

  • 김만재;김태중;최병기
    • 공학기술논문지
    • /
    • 제11권4호
    • /
    • pp.253-257
    • /
    • 2018
  • Exhaust gas from the combustion of automobiles adversely affects the human body and even pollutes the atmosphere. This study investigated the influence of exhaust gas change on intake manifold using the nozzle. First, the flow analysis was performed using the 3D flow analysis program. When the nozzle inlet air velocity increased, the average air velocity in the nozzle diameters of ${\Phi}2.5$ and ${\Phi}5$ increased 37.3% and 31.9% respectively at the intake manifold outlet. As the nozzle inlet air velocity increased, the maximum flow rate of air increased to 42.2% and 32.6%, respectively at nozzle diameters of ${\Phi}2.5$ and ${\Phi}5$. In order to verify the analysis results, experiments on the exhaust gas were performed in the engine simulation system. As the nozzle inlet velocity increased, HC values decreased by 42.4% and 31.4% at nozzle diameters of ${\Phi}2.5$ and ${\Phi}5$, respectively. And CO values decreased by 40.7% and 31.1% at nozzle diameters of ${\Phi}2.5$ and ${\Phi}5$.

균일 예혼합 압축 착화 디젤 엔진의 예혼합 조건 변화에 따른 연소 및 배기 특성 (Effect of Premixing Condition on the Combustion and Emission Characteristics of HCCI Diesel Engine)

  • 김명윤;황석준;김대식;이기형;이창식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.7-12
    • /
    • 2003
  • The purpose of this work is to investigate the effect of premixing condition on the combustion and exhaust emission characteristics in a HCCI diesel engine. To form homogeneous charge before intake manifold, the premixed fuel is injected into premixed tank by GDI injection system and the premixed fuel is ignited by direct injected diesel fuel. But in the case of high intake air temperature, premixed fuel is auto-ignited before diesel combustion and soot emission is increased. In the case of light load condition, the BSFC is improved by intake air heating because increased air temperature promoted the combustion of premixed mixture. NOx and smoke concentration of exhaust emissions are reduced compared to conventional diesel engine. The combustion characteristics of the HCCI diesel engine such as combustion pressure, rate of heat release, and exhaust emission characteristics are discussed.

  • PDF

압축기출구에 공기분사가 터보과급 디젤기관의 성능에 미치는 영향에 관한 연구 (A Study on the Effects of Injected Air into the Compressor Exit for the Performances of a Turbocharged Diesel Engine)

  • 최낙정;이창식
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.796-805
    • /
    • 1995
  • For the purpose of improving performances of a turbocharged diesel engine at low speed, this study investigates the effects of the injected air for the performances and flow characteristics in the intake and exhaust pipes by using the computer simulation with test bed. In the theoretical analysis, the whole flow system, including engine cylinders and intake and exhaust pipes, is calculated numerically by the method of filling and emptying. From the results of this study, the following conclusions may be summarized. Increasing injected air pressure into the pipe of compressor exit brings about the improvement in a performance and flow characteristics of intake and exhaust pipes under full load operating conditions at 1000 rpm of the engine speed, but shows trends of the inferior performances under no load operating conditions at 2000 rpm of the engine speed.

에어챔버가 설치된 인라인 취수펌프장에서 수격현상 (Waterhammer for the In-Line Intake Pumping Station with Air Chamber)

  • 김경엽;안철홍;김범준
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.70-76
    • /
    • 2012
  • Recently, because people are taking a great interest in the water supply system and the related facilities are getting larger, the surge suppression is very important problem. The waterhammer occurs when the pumps are started or stoped for operation or tripped due to the power failure. As the waterhammer problems as a result of the pump power failure were very serious, these situations were carefully investigated. Accordingly, we carried out both numerical simulations and field tests to confirm the safety of Juam intake pumping station in which had the in-line pumps. In this paper, it was reviewed that the water supply system has the reliability on the pressure surge, in case the air chambers were installed at both the inlet and the oulet of the in-line pumping station. From the numerical simulations, we found that negative pressure occurred at the inlet disappeared and high pressure occurred at the outlet reduced due to the air chambers. And these results of numerical simulations verified by the field tests. The field tests carried out in case of normal start, normal stop, one and two of pumps emergency stop. By results of simulations and field tests, we are sure that Juam intake pumping station in which have the air chambers is safe for the waterhammer. In addition, we suggested the operation methods of facilities for safe maintenance of the pumping station.

Water Injection/Urea SCR System Experimental Results for NOx Reduction on a Light Duty Diesel Engine

  • Nam, Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권3호
    • /
    • pp.394-403
    • /
    • 2008
  • The effects of water injection (WI) and urea injection for NOx on a 4-cylinder Direct Injection (DI) diesel engine were investigated experimentally. For water injection, it was installed at the intake pipe and the water quantity was controlled at the intake manifold and Manifold Air Flow (MAF) temperatures while the urea injection was located at the exhaust pipe and the urea quantity was controlled by NOx quantity and MAF. The effects of WI system, urea-SCR system and the combined system were investigated with and without exhaust gas recirculation (EGR). Several experiments were performed to characterize the urea-SCR system, using engine operating points of varying raw NOx emissions. The results of the Stoichiometric Urea Flow (SUF) and NOx map were obtained. In addition, NOx results were illustrated according to the engine speed and load. It is concluded that the NOx reduction effects of the combined system without the EGR were better than those with the EGR-based engine.

11L급 LPLi방식 대형엔진의 흡기스월비 최적화 연구 (Optimization of Swirl Ratio of Intake Port in 11L LPLi Engine)

  • 이진욱;강건용;민경덕
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.99-105
    • /
    • 2003
  • The configuration of intake port is a dominant factor of inlet air flow and mixture formation in an engine. In this study, as an available technology to optimum intake port, the flow box system using resine has been applied. So we presents a methodology for estimating inlet flow characteristics in this paper. This quantified experimental result shows good agreements with visualization data in a cylinder. We obtained the optimal value of swirl ratio and flow coefficient under steady flow rig test for new development of intake port for heavy-duty engine. From this results, the cylinder heat with a good evaluated swirl flow characteristics was developed and adapted for a 11L heavy-duty engine using the liquid phase LPG injection (LPLi) system. This .research expects to clarify major factor that make the intake port efficiently.

흡기다기관 시스템의 구조진동 저감에 대한 연구 (A study on reduction of structural vibration of an intake manifold system)

  • 윤성호;이귀영
    • 오토저널
    • /
    • 제14권5호
    • /
    • pp.69-82
    • /
    • 1992
  • Vibration of intake menifold is important as it could worsen the noise levels radiated from surface itself and support bracket, and it eventually leads to the failures of a Throttle Position Sensor and an Idle Air Control Valve. In this study, structural modification method is proposed to reduce structural vibration of an intake manifold system. At first, vibration problems are identified through tests on a running engine. Then modal data acquired by modal testing and finite element analysis are helpful to understand vibration mechanism of the system, and used as the design guide when structural modifications are attempted. After the system model is validated by comparison of the modal data obtained from analysis and experiment, iterative calculations are performed to find optimized structure of the system by finite element analysis. As a result, a newly designed plenum bracket is suggested in such a way that the intake manifold is stiffened, and that design of the support bracket is suggested in such a way that the intake manifold is stiffened, and that design of the support bracket is changed in terms of bolting position, thickness, shape, and minimum weight increase. Finally, it is shown that a new design achieves a significant reduction of vibration of an intake manifold system and it is confirmed by tests on a running engine.

  • PDF

디젤기관에서 흡기관내로의 물 분사에 의한 매연과 NOx의 동시 저감에 관한 연구 (A Study on the Simultanious Reduction of Smoke and NOx by Water Injection through Intake Port in Diesel Engine)

  • 유경현;오영택
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2186-2191
    • /
    • 2003
  • This study is to investigate the effects of water induction through the air intake system on the characteristics of combustion and exhaust emissions in diesel engine. The effects of water induction through the air intake port were considered in IDI diesel engine in this study. The formation of NOx was significantly suppressed by decreasing the gas peak temperature during the initial combustion process because the water play a role as a heat sink during evaporating in the combustion chamber, but the smoke was slightly increased with increased water amount. Also, NOx significantly decreased with increase in water amount. A simultaneous reduction in smoke and NOx emissions can be obtained when water is injected into the combustion chamber by retarding the fuel injection timing more than without water injection.

  • PDF

레인지 익스텐더 전기자동차 엔진용 저가형 2단속도 고정밀 운전제어시스템 개발 (Development of Low-Cost, Double-Speed, High-Precision Operation Control System for Range Extender Engine)

  • 함윤영;이정준
    • 한국산학기술학회논문지
    • /
    • 제19권11호
    • /
    • pp.529-535
    • /
    • 2018
  • 레인지 익스텐더 전기자동차는 소형의 발전용 엔진이 가장 효율이 좋은 특정 운전영역에서 기동하여 배터리를 충전시키며 주행거리를 연장하는 메커니즘으로 주행한다. 본 연구에서는 저가이면서 제어 로직이 간단한 시스템을 개발하기 위하여 기존 쓰로틀바디시스템을 대체하는 스텝모터방식 흡입공기량 공급시스템을 개발하여 기존 base 엔진에 적용하고, 흡입공기량 증대를 통한 성능 개선을 위해 흡 배기다기관의 길이 변경 효과를 실험적으로 살펴보았다. 실험결과, 하나의 스텝모터로 작동하는 Type B의 흡입공기량조절장치가 Type A보다 전 운전영역에서 성능이 높았으나 유동저항의 증가로 base 엔진보다는 성능이 낮았다. 이를 개선하기 위해 흡기매니폴드에 140mm 어댑터를 장착한 경우와 새로 설계된 70mm 길이의 배기 매니폴드를 적용한 경우 2200rpm과 4300rpm 두 속도조건에서 엔진성능이 향상됨을 확인할 수 있었다. 최적 설계된 엔진을 대상으로 레인지 익스텐더 전기자동차에 적용 가능하도록 발전기 부하를 연결하여 2단 속도로 고정밀 운전제어를 구현하였으며 그 결과, 1단 2200rpm과 2단 4300rpm 운전조건에서 ${\pm}2.5%$ 이내의 속도변화율을 나타내었고, 1단 속도에서 2단 속도로 상승 시 610rpm/s의 목표속도 추종성 결과를 얻었다.