• Title/Summary/Keyword: Air injection rate

Search Result 323, Processing Time 0.03 seconds

Ozone-Enhanced Remediation of Diesel-Contaminated Soil (II): A Column Study (Ozone에 의한 유류오염토양 복원 연구 (II) : 토양 컬럼상에서의 오존 산화)

  • Choi, Heechul;Heechul;Lim, Hyung-Nam;Kim, Kwang-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1825-1832
    • /
    • 2000
  • Column experiments were conducted by using soil columns, to investigate feasibility and efficiency of in-situ ozone enhanced remediation for diesel-contaminated soil. The injection of gaseous ozone into soil column revealed the enhanced decomposition of ozone due to the catalytic reaction between ozone and metal (e.g., Fe, Mn etc.) oxides as evidenced by as much as 25 times shorter half-life of ozone in a sand packed column than in a glass beads packed column. Substantial retardation in the transport of and the consumption of ozone were observed in the diesel contaminated field soil and sand packed columns. After 16 hrs ozonation, 80% of the initial mass of diesel (as diesel range organic) concentration of $800{\pm}50mg/kg$, was removed under the conditions of the flow rate of 50mL/min and $6mg-O_3/min$. Whereas, less than 30% of diesel was removed in the case of air injection. Analysis of the residual TPH(total petroleum hydrocarbon) and selected 8 aliphatics of diesel compounds in the inlet and the outlet of the column confirmed that diesel nonselectively reacted with ozone and then shifted to lower carbon numbered molecules. Water content also was found to be an important parameter in employing ozone to the hydrocarbon-contaminated soil.

  • PDF

A performance study and conceptual design on the ramp tabs of the thrust vector control (추력방향제어장치인 램 탭의 개념설계 및 성능 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Soon-Jong;Park, Jong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3068-3073
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the performance study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and shadow graph. Numerical simulation was also performed to study flow characteristics and interactions between ramp tabs. This paper provides to analyze the location of normal shock wave and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

  • PDF

Effect of Weber Number and Momentum Flux Ratio on Macroscopic Characteristics of Spray from a Coaxial Porous Injector (웨버수 및 운동량 플럭스비에 따른 동축형 다공성재 분사기의 거시적 분무특성)

  • Kim, Do-Hun;Seo, Min-Kyo;Lee, In-Chul;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.1-9
    • /
    • 2012
  • The gas jet from a coaxial porous injector for two-phase flows is discharged from the porous surface, which encloses the center liquid jet, and the gas and liquid jet interact with each other physically. The wall injected gas jet transfers the radial momentum effectively while the radial gas jet develops to axial jet, and the performance of atomizing and mixing can be improved. In this study, the Weber number and the ratio of momentum flux were controlled by changing the gas injection area and the mass flow rate of the gas jet, and a study on the spray characteristics at the cold-flow test using water and air simulant was performed. It is concluded that the radial momentum transfer concept of a coaxial porous injector gives a positive effect on the atomization and mixing of the two-phase spray.

Operating Characteristics of 0.4 MW-Scale Gas Dispersion Type FGD Absorber (0.4 MW급 가스분사식 배연탈황 흡수탑의 운전 특성)

  • An, Hi-Soo;Kim, Ki-Hyoung;Park, Seung-Soo;Park, Kwang-Kyu;Kim, Young-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.415-422
    • /
    • 2008
  • This study was carried out to investigate the effect of operating and design conditions of gas dispersion type of absorber on $SO_2$ removal efficiency. pH difference between upper and lower part of gas dispersing plate of absorber was 0.2, which was relatively low. This was supposed that recirculation capacity of absorbing liquid between froth zone and reaction zone of absorber be increased by oxidation air injection through liquid riser which acted as liquid pump. Test results showed that $SO_2$ removal efficiency was more sensitive than absorber ${\Delta}P$. High $SO_2$ removal even at lower pH resulted from very low concentration of $HSO_3^-$ ion in absorbing liquid because of direct supply of dissolved oxygen into froth zone. 96% of $SO_2$ removal efficiency was obtained under the condition of absorber pH 5.2, flue gas flow rate of $1,530\;Nm^3/hr$, inlet $SO_2$ concentration of 800 ppm, absorber ${\Delta}P$ of 250mmAq. The following equation by a multiple linear regression was obtained to describe the relationship between $SO_2$ removal and operating variables. $$f=1-{\exp}(-1.3939+1.060pH+0.0139{\Delta}P-0.00267G-0.000064SO_2Conc.),\;R^2=0.9719$$

Assessment of hazardous substances and workenvironment for cleanrooms of microelectronic industry (전자산업 청정실의 작업환경 및 유해물질농도 평가)

  • Chung, Eun-Kyo;Park, Hyun-Hee;Shin, Jung-Ah;Jang, Jae-Kil
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.3
    • /
    • pp.280-287
    • /
    • 2009
  • High-tech microelectronics industry is known as one of the most chemical-intensive industries. In Korea, Microelectronics industry occupied 38% of export and 16% of working employees work in microelectronics industry. But, chemical information and health hazards of high-tech microelectronics manufacturing are poorly understood because of rapid development and its penchant for secrecy. We need to investigate on chemical use and exposure control. We Site-visits to 6 high-tech microelectronics manufacturing company which have cleanroom work using over 1,000kg organic solvents (5 semi-conductor chips and its related parts company, 1 liquid crystal display (LCD)). We reviewed their data on chemical use and ventilation system, and measured TVOCs (Total Volatile Organic Compounds) and carbon dioxide concentration. All cleanroom air passed through hepa filters to acheive low particle levels and only 1 cleanroom uses carbon filters to minimize the organic solvents exposures In TVOC screening test, Cleanroom for semi-conductor chips and its related parts company with laminar down flow system (e.g. class 1~100) showed nondetectable level of TVOCs concentration, but Cleanroom for liquid crystal display (LCD) with conventional flow system (e.g. class 1,000~10,000) showed 327 ppm as TVOCs. Acetone concentration in cleanroom for Jig cleaning, LC Injection, Sealing processes were 18.488ppm (n=14), 49.762 ppm (n=15), 8.656 ppm (n=14) as arithmetric mean. Acetone concentration in cleanroom for LCD inspection process was 40ppm (n=55) as geometric mean, where the range was 7.8~128.7ppm and weakly correlated with ventilation rate efficiency(r=0.44, p<0.05). To control organic solvents in cleanrooms, chemical and carbon filters should be installed with hepa filters. Even though their volatile organic compounds concentration was not exceed to occupational exposure limits, considering of entrance limited cleanroom environment, long-term period exposure effects and adverse health effects of cleanroom worker need further reseach.

Performance Prediction according to Equivalence Ratio Change in Simulated-EGR Compression Ignition Engine Containing CO2 (CO2를 포함한 Simulated-EGR 압축착화엔진에서 당량비 변화에 따른 성능 예측)

  • Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.25 no.1
    • /
    • pp.21-26
    • /
    • 2020
  • The objective of this work is to numerically reveal the effect of equivalence ratio change on the simultaneous reduction of NOX and soot emissions from the simulated-EGR compression ignition engine containing CO2. An experiment was conducted by using a single-cylinder common-rail injection system engine, an intake control system, and exhaust emissions analyzers. The numerical analysis results were validated under the same experimental conditions. To investigate the effect of equivalence ratio by simulated-EGR containing CO2, the O2, N2, and CO2 mole fraction were changed in the initial air conditions to the cylinder. The results were analyzed in terms of peak cylinder pressure, indicated mean effective pressure, indicated specific nitrogen oxide, and indicated specific soot. It was revealed that ignition delay characteristics and heat release rate (ROHR) characteristics were not significantly different according to the equivalence ratio. However, as the equivalence ratio increased from 0.68 to 0.83, the maximum combustion pressure and IMEP decreased by about 6.5% and 9.4%, respectively. In the case of ISFC, as is well known, the trend is opposite of IMEP. In the case of ISNO, as the equivalence ratio increased, less NO was generated, and as the equivalence ratio increased by 0.05, the ISSoot value of about 10% increased.

An Experimental Study on Factors Affecting the Leachability of Cs-137 in Cement Matrix and Leaching Model with Backfill (시멘트 고화체내 Cs-137의 침출능에 영향을 미치는 인자에 대한 실험적 연구와 뒷채움재를 고려한 침출 모델)

  • Park, Jong-Kil;Lee, Kun-Jai
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.374-386
    • /
    • 1991
  • Various factors affecting the teachability of Cs-137 in cement matrix have been investigated. Factors investigated include such as pressure curing, vibration curing, pressure leaching, the effect of the clay addition, ion-exchange resin(IRN-77) addition, and $CO_2$or air injection. Leaching experiments were conducted by the method recommended by IAEA. To analyze the experimental results, pore structure analysis of cement matrices was carried out by BET method. Cement matrices may not contact directly with underground water in real repository, since the surroundings of disposed drums are filled with backfill. Thus, the effect of backfill to the teachability has been investigated. The well-known diffusion theory was utilized to predict long term leach rate and cumulative fraction leached of Cs-137 or non-radioactive species.

  • PDF

Change in Risk of Dropout Due to Bleeding during Bloodletting-Cupping Therapy (습식 부항 시술시 사혈량에 따른 부항 탈락 위험도 탐색)

  • Kim, Daehyeok;Bae, Eunkyung;Park, Jeonghwan;Kim, Soyoung;Lee, Sanghun
    • Korean Journal of Acupuncture
    • /
    • v.35 no.1
    • /
    • pp.41-45
    • /
    • 2018
  • Objectives : To investigate minimum pressure by verifying changes in pressure due to bleeding amount during bloodletting-cupping therapy. Methods : (1) We compared adhesion performance of four different cupping cups of same size: two disposable cupping cups(A, B) and two reusable cupping cups(A, B) each were vacuumed three times and kept in place for 10 minutes. (2) We vacuumed two different sized disposable cupping cups(A), size.1(InnerDiameter 48.8 mm) and size.3(InnerDiameter 39.1 mm), twice each(-200 mmHg) on silicon plate. We injected water and air at regular intervals in cupping cups by using a syringe, and then measured change of pressure in cupping cups and pressure at the time of dropout. Results : (1) Pressure reduction was $4.75{\pm}2.78%$ on average in the order of 'Disposable[A]>reusable[B]>Disposable[B]>reusable[A]', so that pressure retention performance of disposable cups can't be regarded as inferior to that of reusable cups. (2) Pressure of disposable cupping B(size.1) decreased by an average of -40.08 mmHg per 5 ml of water. At -24.8 mmHg, when 22 ml of water has been injected, cup has come off. Pressure of disposable cupping B(size. 3) decreased by an average of -99.4 mmHg per 5 ml of water. At -48.6 mmHg, when 13 ml of water was injected, cupping came off. Conclusions : Considering reduction rate of pressure due to water injection, in case of bleeding more than 15 ml, size.3 cup always comes off, therefore it needs to be re-operated at least once. Meanwhile, size.1 cup does not always come off in the same condition, depending on the initial pressure and therefore, re-operation may be considered.

Analysis of Measuring Error for Particle Size Analysis by Laser Diffraction Spectrometer (입자크기분석을 위한 레이저회절 분광계의 측정오차 분석)

  • Ha, Sang-An;Son, Heui-Jeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.713-722
    • /
    • 2000
  • This study analysed error of measurement and reproducibility for particle size analysis by the laser diffraction spectrometer. Laser diffraction spectrometers has become a very important method of particle size analysis. This measuring method has the advantage of simple operation, good reproducibility and rapid analysis. A feeding and dispersing system have been developed, which allows mass throughputs between 0.1~23 g/min in flowing air and 1.4~35% in flowing liquid. It has been used as a feeder unit for wet and dry particle size analysis from diffraction patterns. Relevant parameters, such as particle shape, particle size, dispersion, flow rate, concentration were analysed for measuring error. And system parameters of instruments for measurement of dynamic processes, eg, measuring time, focal plane, injection pressure drop and dispersion effect by the ultrasonic and mixing of preliminary treatment, were also discussed.

  • PDF

An study on the ramp tabs for thurst vector control symmetrically installed at the supersonic nozzle exit (초음속 노즐 출구에 대칭적으로 설치한 추력방향제어장치인 램프 탭의 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.32-37
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and schlieren system. This paper provides the thrust spoilage, three directional forces and moments and distribution of surface pressure on the region enclosed by the tapered ramp tabs.