• Title/Summary/Keyword: Air hole

Search Result 435, Processing Time 0.026 seconds

Measurements of Spray Characteristics According to Nozzle Property in Dual Fuel Engine with a Mechanical Fuel Pump (기계식 연료펌프를 사용하는 혼소엔진에서 노즐특성에 따른 경유 분사특성 측정)

  • Cho, S.H.;Yoo, S.H.;Lee, B.H.;Kim, D.H.;Lee, D.Y.
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.94-99
    • /
    • 2012
  • The characteristics of spray behavior and injected amount were studied with two types of nozzles for using in a compression ignition engine with dual fuel technology for construction machines. A penetration length of spray tends to shorten due to a decrease of injected amount of a diesel fuel with dual fuel engine application. In order to ignite the gaseous fuel premixed with air during intake process, a diesel fuel, which was compression ignited, needs to penetrate somehow similar depth compared with the case of a diesel fuel-only-injection. In this work, a nozzle with reduced hole diameter and increased number of holes was tested and demonstrated that, compared to diesel 100% case, its penetration lengths are comparable to 74% and 79%, respectively, of those of 100% and 50% supply of a diesel fuel with the baseline nozzle that has four holes and 30.4% increased diameter. This will presumably enhancement the combustion in a dual fuel engine. A design suggestion was also made in this work to achieve similar penetration length of spray with diesel 100% case to prevent combustion from being deteriorated in a dual fuel engine.

A Study on the Structural Analysis of the Supporting System for LNG Vehicle Fuel Tank (LNG차량용 연료탱크의 지지시스템 구조해석에 관한 연구)

  • Yun, Sang-Kook;Kim, Dong-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.841-846
    • /
    • 2008
  • Recently the LNG(liquified natural gas) public buses have been introduced to prevent the air pollution in metropolitan areas. As the LNG temperature in fuel tank is as low as $-162^{\circ}C$. the thermal and structural effects of tank components need to be studied for safe introduction in the market. Especially the support system of LNG fuel tank in vehicle, which has connected with inside and outside of tanks, should put attention to reduce the structural stress due to cryogenic temperature and to restrict the heat flux from ambient. There are two supporting systems in the tank, that one is connected between inside and outside tanks by welding, and the other is the inserted support system which is a cylindrical SUS bar inserted in a hole of the supporting plate. In this study the temperature distribution and thermal stress of the inserted support system were evaluated by using the utility program as ANSYS. The results showed that the rate of heat transfer to inner tank through this support system was quite small due to limited contact of support bar with plate. but the thermal stress of support plate was obtained beyond the limited tensile value of SUS304. The cautious design for the support plate part, therefore, should be given to make the safe support system of LNG vehicle fuel tank.

An Experimental Study on the Photodegradation of Volatile Organic Compounds(VOCs) using $TiO_2$ Nano Particles ($TiO_2$ 나노 입자를 이용한 휘발성 유기 화합물의 광분해에 관한 실험적 연구)

  • Lee, Ju-Yong;Kim, Seong-Chan;Ahn, Young-Chull;Hwang, Eu-Gene;Lee, Jae-Keun;Hwang, Jung-Sung;Kim, Tae-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1881-1884
    • /
    • 2003
  • In this experiment, the oxidations of p-Xylene (140-180 ppmv), one of the air pollutants as a VOC, using $UV/TiO_2$ photocatalyst is studied. In order to increase the specific surface area, the filter is coated by nano $TiO_2$ particles. The photodegradation system consists of a VOCs generator, a photocatalyst filter and a measuring equipment. Illumination is generally provided by two of 20 W black light lamps with 380 nm of wavelength. The filter coated by nano $TiO_2$ particles has a passing efficiency over 80% but a pressure drop of 9.0 $mmH_2O$ at 0.45 cm/s. The filter endurance is better than activated carbon at the same pressure drop.

  • PDF

Fuel Evaporation Characteristics of a Port Injection Type Motorcycle Engine with Changing Fuel Spray Timing (포트분사식 이륜차 엔진의 연료 분사시기에 따른 연료 증발 특성)

  • Lee Kihyung;Kang Inbo;Kim Hyungmin;Baik Seungkook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1360-1368
    • /
    • 2005
  • This study investigates the characteristics of spray, such as evaporation rate and spray trajectory, for a 4-hole injector which is applied to a 4-valve motorcycle gasoline engine. Three dimensional, unsteady, compressible flow and spray within the intake-port and cylinder have been simulated using the VECTIS code. Spray characteristics were investigated at 6000 rpm engine speed. Furthermore, we visualized fuel behavior in the intake-port using a CCD camera synchronized with a stroboscope in order to compare with the analytical results. Boundary and intial conditions were employed by complete 1-D simulation of the engine using the WAVE code. Fuel was injected into the intake-port at two time intervals relative to the position of the intake valves so that the spray arrived when the valves were closed and fully open. The results showed that the trajectory of the spray was directed towards the lower wall of the port with injection against the closed valves. With open valve injection, a large portion of the fuel was lifted by the co-flowing air towards the upper half of the port and this was confirmed by simulation and visualization.

Highly Sensitive Trimethylamine Sensing Characteristics of V-doped NiO Porous Structures (바나듐이 도핑된 NiO 다공성 구조의 고감도 Trimethylamine 감응 특성)

  • Park, Sei Woong;Yoon, Ji-Wook;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.218-222
    • /
    • 2016
  • Pure and V-doped NiO porous structures were prepared by the evaporation-induced surfactant assembly and subsequent pyrolysis of assembled structures, and their gas sensing characteristics were investigated. Pure NiO porous structures showed negligible gas responses (S=$R_g/R_a$, $R_g$: sensor resistance in analytic gas; $R_a$: sensor resistance in air) to 5 ppm trimethylamine (S=1.17) as well as other interfering gases such as ethanol, p-xylene, toluene, benzene and formaldehyde (S=1.02-1.13). In contrast, the V-doped NiO porous structures exhibited a high response and selectivity to 5 ppm trimethylamine (S=14.5) with low cross-responses to other interfering gases (S=4.0-8.7) at $350^{\circ}C$. The high gas response of V-doped NiO porous structures to trimethylamine was explained by electronic sensitization, that is, the increase in the chemoresistive variation due to the decrease in the hole concentration. The enhanced selectivity to trimethylamine was discussed in relation to the interaction between basic trimethylamine gas and acidic V catalysts.

A study on transparent conducting films for GaN-based light emitting diodes (GaN-LED용 투명전도막에 대한 연구)

  • Lee, Kang-Young;Kim, Won;Uhm, Hyun-Seok;Kim, Eun-Kyu;Kim, Myun-Sung;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1270-1271
    • /
    • 2008
  • Effects of thin ZnO/Mg interlayers on electrical and optical properties between p-GaN and ITO were characterized for its application to GaN-LEDs. The ZnO and Mg layers were deposited to have various thicknesses (1${\sim}$6nm for ZnO and 1${\sim}$2nm for Mg) by sputtering. After RTA process, the atomic migration between Mg and ZnO and the formation of Ga vacancy were observed from SIMS depth profile, resulting in the increase of hole concentration and the reduction of band bending at the surface region of p-GaN. The sample using ZnO(2nm)/Mg(2nm) interlayer produced the lowest contact resistance with SBH(Schottky barrier height) of 0.576 eV and the transmittance higher than 83% at a wavelength of 460nm when annealed at 500$^{\circ}C$ for 3min in air ambient.

  • PDF

A Basic Study of Fuel 2-staging Y-jet Atomizer to Reduce NOx in Liquid Fuel Burner (액체 연료용 버너에서 NOx 저감을 위한 연료2단 분사 Y-jet 노즐에 관한 기초연구)

  • Song, Si-Hong;Lee, Gi-Pung;Kim, Hyeok-Je;Park, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1616-1623
    • /
    • 2001
  • A basic experimental study has been carried out to find out the design parameters of fuel 2-staging atomizers in order to reduce nitrogen oxides(NOx) rate emitted from the steam boilers used the liquid fuel. The heavy fuel oil(B-Coil) and fuel 2-staging Y-jet twin-fluid atomizers were adopted in this study. The results of this paper were obtained from the real as well as the model scale atomizers. In the case of model atomizers test, NOx reduction rate was strongly dependent on the staged fuel rate, but it was weakly dependent on the injection hole arrangement and air swirl conditions. The real scale atomizers was designed and manufactured on the base of these test results, and those was mounted and operated in the real boiler generates 185 ton steam per an hour. The reduction rate of the model and real plant was reached 10∼30% of base NOx by atomizers. but dust was sharply increased in the low O$_2$combustion region of the real plant.

Improving Diesel Car Smoke Measurement Probe Performance of Diesel Cars Using Hole Position (홀 위치에 따른 디젤자동차 매연 측정프로브 성능 개선 연구)

  • Chae, Il-Seok;Kim, Eun-Ji;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • Car inspection systems are regularly carried out by the state to ensure the safety and emission status of cars, thereby improving the safety and quality of life by reducing fine dust and greenhouse gases that are the main culprits of vehicle defects and air pollution. These automobile inspections are largely divided into either regular or comprehensive inspections. This study analyzed the smoke measuring probes used in the lug - down 3 mode. In the previously issued paper "Improvement of Soot Probe Efficiency for Automotive Emission Measurement," an improved smoke measurement probe(B) improved on the problems that arise from the current smoke measurement probe (A). In this study, a technique that can improve the probe's inhalation efficiency over the improved (B) probes was applied to probes (C). Probe (C) involves a structure designed close to the center of the circumference of the exhaust pipe, and the suction efficiency was improved by adding a variable center unit.

Extensive Tension Pneumocephalus Caused by Spinal Tapping in a Patient with Basal Skull Fracture and Pneumothorax

  • Lee, Seung-Hwan;Koh, Jun-Seok;Bang, Jae-Seung;Kim, Myung-Chun
    • Journal of Korean Neurosurgical Society
    • /
    • v.45 no.5
    • /
    • pp.318-321
    • /
    • 2009
  • Tension pneumocephalus may follow a cerebrospinal fluid(CSF) leak communicating with extensive extradural air. However, it rarely occurs after diagnostic lumbar puncture, and its treatment and pathophysiology are uncertain. Tension pneumocephalus can develop even after diagnostic lumbar puncture in a special condition. This extremely rare condition and underlying pathophysiology will be presented and discussed. The authors report the case of a 44-year-old man with a basal skull fracture accompanied by pneumothorax necessitating chest tube suction drainage, who underwent an uneventful lumbar tapping that was complicated by postprocedural tension pneumocephalus resulting in an altered mental status. The patient was managed by burr hole trephination and saline infusion following chest tube disengagement. He recovered well with no neurologic deficits after the operation, and a follow-up computed tomography (CT) scan demonstrated that the pneumocephalus had completely resolved. Tension pneumocephalus is a rare but serious complication of lumbar puncture in patients with basal skull fractures accompanied by pneumothorax, which requires continuous chest tube drainage. Thus, when there is a need for lumbar tapping in these patients, it should be performed after the negative pressure is disengaged.

DME and Diesel HCCI Combustion Characteristics (DME와 Diesel의 HCCI 연소특성 비교)

  • Lee, Joo-Kwang;Kook, Sang-Hoon;Park, Cheol-Woong;Bae, Choong-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.231-236
    • /
    • 2003
  • HCCI(Homogeneous Charge Compression Ignition) combustion is an advanced combustion process explained as a homogeneously premixed charge of a fuel where air is admitted into the cylinder and compression ignited. It has possibility to reduce NOx by spontaneous auto-ignition at multiple points that allows very lean combustion resulting in low combustion temperatures. Particulate matters (PM) could be also reduced by the homogeneous combustion and no fuel-rich zones. Injection timing is extremely advanced to achieve homogeneous charge where a diesel fuel could not be vaporized sufficiently due to low pressure and low temperature condition. Also the over-penetration could be a severe problem. The small injection angle and multi-hole injectors were applied to solve these problems. Dimethyl ether (DME) as an altenative fuel was also applied to relive the bad vaporization problem associated with early injection of diesel fuel. Neat DME has a very high cetane rating and high vapor pressure. Contained oxygen reduces soot during the combustion. Experimental result shows DME can be easily operated in an HCCI engine. PM shows almost zero value and NOx is reduced more than 90% compared to direct-injection diesel engine operating mode but problem of early ignition needs more investigation.

  • PDF