• 제목/요약/키워드: Air handling unit

검색결과 78건 처리시간 0.03초

신경망 이용 공조기 고장검출 및 진단 (Fault Detection and Diagnosis for an Air-Handling Unit Using Artificial Neural Networks)

  • 이원용;경남호
    • 설비공학논문집
    • /
    • 제13권12호
    • /
    • pp.1288-1296
    • /
    • 2001
  • A scheme for on-line fault detection and diagnosis of an air-handling unit is presented. The fault detection scheme uses residuals which are generated by comparing each measurement with analytical redundancies computed from the reference models. In this paper, artificial neural networks (ANNs) are used to estimate analytical redundancy and to classify faults. The Lebenburg-Marquardt algorithm is used to train feed forward ANNs that provide estimates of continuous states and diagnosis results. The simulation result demonstrated that the ANNs can effectively detect and diagnose faults in the highly non-linear and complex HVAC systems.

  • PDF

도시철도 지하역사 공기조화기의 미세먼지 저감성능 개선을 위한 사전연구 (Pre-study for the improvement of air filtration performance in the air handling unit of subway station)

  • 강중구;신창헌;배성준;권순박;김세영;한석윤
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.541-545
    • /
    • 2008
  • Particulate matter (PM) is one of the major indoor air pollutants especially in the subway station in Korea. In order to remove PM in the subway station, several kinds of PM removal system such as roll-filter, auto-washable air filter, demister, and electrostatic precipitator re used in the air handling unit (AHU) of subway station. However, those systems are faced to operation and maintenance problems since the filter-regeneration unit consisting of electrical or water jet parts is malfunctioned due to the high load of particulates and the filter material needs periodic replacement. In this study, we surveyed the particle removal systems in order to develop the new system of particle removing can be adopted in the current AHU of subway station.

  • PDF

상용 CFD코드를 이용한 공조기 입구 형상 설계 (Inlet Shape Design of Air Handling Unit Using Commercial CFD Code)

  • 최영석;주종일;이용갑;주원구
    • 한국유체기계학회 논문집
    • /
    • 제5권3호
    • /
    • pp.54-59
    • /
    • 2002
  • A commercial CFD code is used to compute the 3-D viscous flow field within the inlet flow concentrator of the newly developed AHU (Air Handling Unit). To improve the performance of the AHU, the inlet air needs to be gradually accelerated to the fan's annular velocity without causing turbulence or flow separation. Three major geometric parameters were selected to specify the inlet shape of the AHU. The performance of the AHU could be measured by the inlet and outlet flow uniformity and the total pressure loss through the inlet flow concentrator. Several numerical calculations were carried out to determine the influence of the geometric parameters on the performance of the AHU. The best geometric values were decided to have efficient inlet shape with analyzing CFD calculation results.

상용 CFD코드를 이용한 공조기 입구형상의 설계 (Inlet Shape Design of Air Handling Unit Using Commercial CFD Code)

  • 최영석;주종일;주원구
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.448-453
    • /
    • 2001
  • A commercial CFD code is used to compute the 3-D viscous flow field within the inlet flow concentrator of the newly developed AHU(Air Handling Unit). To improve the performance of the AHU, the inlet air needs to be gradually accelerated to the fan's annular velocity without causing turbulence or flow separation. Three major geometric parameters were selected to specify the inlet shape of the AHU. Several numerical calculations are carried out to determine the influence of the geometric parameters on the performance of the AHU. The performance of the AHU could be measured by the inlet and outlet flow uniformity and the total pressure loss through the inlet flow concentrator. The optimized nondimensionalized velocity profile through the inlet flow concentrator were used for the design of the AHU with the various volume flow rates.

  • PDF

공조 시스템의 고장진단을 위한 분류기술 연구 (Classification Methods for Fault Diagnosis of an Air Handling Unit)

  • 이원용;신동열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.420-422
    • /
    • 1998
  • All Fault Detection and Diagnosis(FDD) methods utilize classification techniques. The objective of this study was to demonstrate the application of classification techniques to the problem of diagnosing faults in data generated by a variable-air-volume(VAV) air-handling unit(AHU) simulation model and to describe the characteristics of the techniques considered. Artificial neural network classifier and fuzzy clustering classifier were considered for fault diagnostics.

  • PDF

흡수식 공조 시스템의 동적 모델과 시뮬레이션 (Dynamic Models and Simulation of the Absorption Air Conditioning System)

  • 한도영;이승기
    • 설비공학논문집
    • /
    • 제12권11호
    • /
    • pp.994-1003
    • /
    • 2000
  • Control algorithms for the absorption air conditioning system may be developed by suing dynamic models of the system. The simplified effective dynamic models, which can predict the dynamic behaviors of the system, may help the development of effective control algorithms for the system. In this study, a dynamic simulation program for the absorption air conditioning system was developed. Dynamic models for an absorption chiller, a cooling tower, an air handling unit, a boiler, a three way valve, a controller, and a duct were developed and programed. Control algorithms for the absorption chiller, the cooling tower, and the air handling unit were selected, and analyzed to show the effectiveness of dynamic models. From the simulation results, it may be concluded that this simulation program may be effectively used for the development of optimal control algorithms of the absorption air conditioning system.

  • PDF

공기조화기 설계프로그램 개발 (Development of Design Program for Air Handling Units)

  • 함진기;김종화;김영기;김영일;강병윤
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.674-679
    • /
    • 2000
  • An air handling unit(AHU) has been usually designed by manual calculations. Drawing works together with design calculations should be redone far every designing work, and also be needed to make some corrections of them. In order to design the AHU more efficiently, an AHU program has been developed. The developed program on the Windows environment is operated by the graphic user interface(GUI) realized using the Visual Basic Interpreter. The program provides calculation sheet of coils, weights and pressures in a MS-Excel file format as well as design drawing of the AHU in a Auto CAD file format idealized by AutoLISP. Those files of the commercial softwares make easier for a designer to transfer design results to the another company for bid via e-mail.

  • PDF

공기조화기 장착용 축상유입식 싸이클론의 압력손실에 대한 수치해석 및 실험적 연구 (Numerical and experimental study on the pressure dorp of axial-flow cyclone in the air handling unit)

  • 권순박;박덕신;조영민;김세영;김명준;김호중;김태성
    • 한국입자에어로졸학회지
    • /
    • 제5권2호
    • /
    • pp.37-43
    • /
    • 2009
  • Particulate matter (PM) is one of the major indoor air pollutants especially in the subway station in Korea. In order to remove PM in the subway station, several kinds of PM removal system such as roll-filter, auto-washable air filter, demister, and electrostatic precipitator are used in the air handling unit (AHU) of subway stations. However, those systems are prone to operation and maintenance problems since the filter-regeneration unit consisting of electrical or water jet parts might malfunction due to the high load of particulates unless the filter medium is periodically replaced. In this study, the use of axial-flow cyclone was proposed for particulate filter unit in the AHU for its low operation and maintenance cost. Novel shape of axial-flow cyclone was designed by using computational fluid dynamics (CFD). The shape of vortex vane was optimized in terms of pressure drop and tangential velocity. In addition, CFD analysis was validated experimentally through the pressure drop measurement of mock-up model. We found that pressure drop and tangential velocity of fluid through the axia-flow cyclone was significantly affected by the rotating degree of vortex vane and the numerical prediction of pressure drop agreed well with experimental measurement.

  • PDF