• Title/Summary/Keyword: Air fuel ratio

Search Result 804, Processing Time 0.028 seconds

A Study on Hybrid Power Generation System for Hour-Flight Drone (시간체공 드론 적용을 위한 하이브리드 동력시스템 연구)

  • Myung-Wook Choi;Seung-Jin Yang;Jung-Min Lim;Chae-Joo Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.269-276
    • /
    • 2023
  • In this research works, we propose a hybrid power generation system for drone capable of staying in the air for more than 1 hour. This power system converts the alternating current generated by the generator into direct current through a diode bridge circuit to charge the battery and uses a battery system having separated cells to obtain high controllability of the power system. The fuel efficiency and the power output for individual load were analyzed, and also the performance of a selected generator was studied in this paper. The drone which is equipped with the proposed hybrid power generation system calculated 0.82 ratio for weight vs power output, and flight time of drone showed 4,179 seconds.

Development Technology Trends of Propulsion System in Unmanned Air Vehicles (무인기 추진시스템 개발 기술 동향)

  • Nak-Gon Baek;Juhyun Im
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.95-103
    • /
    • 2024
  • The propulsion technology used in unmanned Aerial Vehicles (UAVs)—which represent one of the most important development directions in aviation—is significantly related to their flight performance. This review paper discusses the different types of propulsion technologies used in unmanned aerial vehicles, namely the internal combustion engine (reciprocating, rotary, and gas turbine engines), the hybrid system, and the pure electric system. In particular, this paper presents and discusses the classification, working principles, characteristics, and critical technologies of these types of propulsion systems. These findings are expected to be helpful in establishing a development framework, comprehensive views, and multiple comparisons of future UAV propulsion systems.

Study of Flame Structure by Chemiluminescence and Laser Diagnostics in Model Gas Turbine Combustor (자발광 및 레이저 계측기법을 이용한 모형 가스터빈 연소기에서 화염구조 분석)

  • Yoon, Ji-Su;Kim, Min-Ki;Lee, Min-Chul;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.10-19
    • /
    • 2012
  • To eliminate the onset of combustion instabilities and develop effective approaches for control, flame structure is very important. In this study, we conducted experiments under various operating conditions with a model gas turbine combustor to examine the relation of combustion instability and flame structure by OH chemiluminescence and laser diagnostics of He-Ne laser absorbtion system. The swirling LNG($CH_4$)/air flame was investigated with overall equivalence ratio of 1.2 and dump plane fuel-air mixture velocity 25 ~ 70 m/s. We founded that the combustion instability phenomenon occurs at lower mixing velocity and higher mixing velocity conditions. We also concluded that fluid dynamical vortex frequency has major effects on the combustion instability characteristics at lower mixing velocity condition.

Nonlinear Static Model-based Feedforward Control Algorithm for the EGR and VGT Systems of Passenger Car Diesel Engines (승용디젤엔진의 EGR, VGT 시스템을 위한 비선형 정적 모델 기반 피드포워드 제어 알고리즘 설계)

  • Park, Inseok;Park, Yeongseop;Hong, Seungwoo;Chung, Jaesung;Sohn, Jeongwon;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.135-146
    • /
    • 2013
  • This paper presents a feedforward control algorithm for the EGR and VGT systems of passenger car diesel engines. The air-to-fuel ratio and boost pressure are selected as control indicators and the positions of EGR valve and VGT vane are used as control inputs of the EGR and VGT controller. In order to compensate the non-linearity and coupled dynamics of the EGR and VGT systems, we have proposed a non-linear model-based feedforward control algorithm which is obtained from static model inversion approach. It is observed that the average modeling errors of the feedforward algorithm is about 2% using stationary engine experiment data of 225 operating conditions. Using a feedback controller including proportional-integral, the modeling error is compensated. Furthermore, it is validated that the proposed feedforward algorithm generates physically acceptable trajectories of the actuator and successfully tracks the desired values through engine experiments.

A Study on Buzz Margin Control in Supersonic Engine Intake using PID Controller (PID 제어기를 이용한 초음속 엔진 흡입구의 버즈마진 제어에 관한 연구)

  • Kong, Chang-Duk;Ki, Ja-Young;Kho, Seong-Hee;Kang, Myoung-Cheol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.88-92
    • /
    • 2009
  • Total pressure recovery ratio in intake is crucial factor to the operational characteristics of supersonic propulsion system because it does not compress inlet air mechanically by compressor, but does compress inlet air by ram compression. As the result of that the dynamic characteristic analysis of engine was performed before the controller was designed, it could be ascertained when the AoA of flight vehicle increases, the buzz margin decreases so that the shock wave produced outside intake in the specified area according to flight operation's characteristics. Therefore the PID control algorithm was designed to be controlled buzz margin that the characteristic of shock wave could meet the requirement of performance in intake. The PID controller was designed that the buzz margin value is being positive number using the control variables; fuel flow and nozzle throat area.

  • PDF

Study of the cap-and-trade system against the air pollutants in the Seoul Metropolitan Area and suggestion for its enforcement throughout South Korea (수도권 대기오염물질 배출권거래제에 대한 고찰 및 총량제 확대 시행을 위한 제언)

  • Park, Min Ha;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.15 no.4
    • /
    • pp.159-171
    • /
    • 2019
  • The cap-and-trade system against the air pollutants in the Seoul Metropolitan Area (SMA), Korea has been implemented since 2008 and will be implemented other areas in Korea on 2020. In this study, to identify the outcome and effectiveness of the cap-and-trade system in the SMA, (1) the rate of change for NOx and SOx emissions, (2) differences between the real emission and allocated amount, and (3) the status of trading are reviewed. It was found that the NOx and SOx emissions from the sources under the cap-and-trade system decreased in the SMA but the reduction was mainly due to the reduction of fuel usage not related to the system. It was found that the average percentage of annual emission in the SMA to the allocated amount between 2008 and 2018 was 66.9% for NOx and 69.3% for SOx, respectively. It suggests that there was over allocation of the emission amounts. The average trading prices in the SMA were 0.193 $/kg for NOx and 0.128 $/kg for SOx, far lower than those in RECLAIM, 131.942 $/kg and 81.677 $/kg, respectively. It was suggested that (1) the cap system for NOx and SOx emissions should be implemented only for the area with high emission ratio from large point sources, (2) the trade system is not suitable for the effective implementation of the cap system, and (3) Korean government should not allow over allocation in order to ensure sound market function without delaying the introduction of technology.

Study of Flame Structure by Chemiluminescence and Laser Diagnostics in Model Gas Turbine Combustor (자발광 및 레이저 계측기법을 이용한 모형 가스터빈 연소기에서 화염구조 분석)

  • Yoon, Ji-Su;Kim, Min-Ki;Lee, Min-Chul;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.367-376
    • /
    • 2012
  • To eliminate the onset of combustion instabilities and develop effective approaches for control, flame structure is very important. In this study, we conducted experiments under various operating conditions with a model gas turbine combustor to examine the relation of combustion instability and flame structure by OH chemiluminescence and laser diagnostics of He-Ne laser absorbtion system. The swirling LNG(CH4)/air flame was investigated with overall equivalence ratio of 1.2 and dump plane fuel-air mixture velocity 25 ~ 70 m/s. We founded that the combustion instability phenomenon occurs at lower mixing velocity and higher mixing velocity conditions. We also concluded that fluid dynamical vortex frequency has major effects on the combustion instability characteristics at lower mixing velocity condition.

  • PDF

Study on Hydrogen Production and CO Oxidation Reaction using Plasma Reforming System with PEMFC (고분자 전해질 연료전지용 플라즈마 개질 시스템에서 수소 생산 및 CO 산화반응에 관한 연구)

  • Hong, Suck Joo;Lim, Mun Sup;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.656-662
    • /
    • 2007
  • Fuel reformer using plasma and shift reactor for CO oxidation were designed and manufactured as $H_2$ supply device to operate a polymer electrolyte membrane fuel cell (PEMFC). $H_2$ selectivity was increased by non-thermal plasma reformer using GlidArc discharge with Ni catalyst simultaneously. Shift reactor was consisted of steam generator, low temperature shifter, high temperature shifter and preferential oxidation reactor. Parametric screening studies of fuel reformer were conducted, in which there were the variations of the catalyst temperature, gas component ratio, total gas ratio and input power. and parametric screening studies of shift reactor were conducted, in which there were the variations of the air flow rate, stema flow rate and temperature. When the $O_2/C$ ratio was 0.64, total gas flow rate was 14.2 l/min, catalytic reactor temperature was $672^{\circ}C$ and input power 1.1 kJ/L, the production of $H_2$ was maximized 41.1%. And $CH_4$ conversion rate, $H_2$ yield and reformer energy density were 88.7%, 54% and 35.2% respectively. When the $O_2/C$ ratio was 0.3 in the PrOx reactor, steam flow ratio was 2.8 in the HTS, and temperature were 475, 314, 260, $235^{\circ}C$ in the HTS, LTS, PrOx, the conversion of CO was optimized conditions of shift reactor using simulated reformate gas. Preheat time of the reactor using plasma was 30 min, component of reformed gas from shift reactor were $H_2$ 38%, CO<10 ppm, $N_2$ 36%, $CO_2$ 21% and $CH_4$ 4%.

Analysis of CO/CO2 Ratio Variability According to the Origin of Greenhouse Gas at Anmyeon-do (안면도 지역 온실기체 기원에 따른 CO/CO2 비율 변동성 분석 연구)

  • Kim, Jaemin;Lee, Haeyoung;Kim, Sumin;Chung, Chu-Yong;Kim, Yeon-Hee;Lee, Greem;Choi, Kyung Bae;Lee, Yun Gon
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.625-635
    • /
    • 2021
  • South Korea established the 2050 Carbon Neutral Plan in response to the climate crisis, and to achieve this policy, it is very important to monitor domestic carbon emissions and atmospheric carbon concentration. Both CO2 and CO are emitted from fossil fuel combustion processes, but the relative ratios depend on the combustion efficiency and the strength of local emission regulations. In this study, the relationship between CO2 and CO was analyzed using ground observation data for the period of 2018~2020 at Anmyeon-do site and the CO/CO2 ratio according to regional origin during high CO2 cases was investigated based on the footprint simulated from Stochastic Time-Inverted Lagrangian Transport (STILT) model. CO2 and CO showed a positive correlation with correlation coefficient of 0.66 (p < 0.01), and averaged footprints during high CO2 cases confirmed that air particles mainly originated from eastern and north-eastern China, and inland of Korean Peninsula. In addition, it was revealed that among the cases of high CO2 concentration, when the CO/CO2 ratio is high, the industrial area of eastern China is greatly affected, and when the ratio is low, the contribution of the domestic region is relatively high. The ratio of CO2 and CO in this study is significant in that it can be used as a useful factor in determining the possibility of domestic and foreign origins of climate pollutants.

Study on Backfire for a Two-Stroke Hydrogen Fueled Free-Piston Engine with Loop Scavenging (루프소기방식을 갖는 2행정 프리피스톤 수소기관의 역화에 관한 연구)

  • Cho, Kwan-Yeon;Byun, Chang-Hee;Back, Dae-Ha;Lee, Jong-Tae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.487-492
    • /
    • 2010
  • For developing a two-stroke free-piston hydrogen engine with high efficiency and low emission, determination of the scavenging type is one of the most important factor. In this research, backfire characteristics for loop scavenging were analyzed with the number of piston crevice volume and piston expansion speed. Rapid Compression Expansion Machine, RCEM was used for combustion research of the free piston $H_2$ engine in the experiment. As the results, it was shown that although backfire occurring in a loop scavenging type can be partially controled by a complete exhaust of burned gas, possibility of backfire basically exist due to the structure which piston crevice volumes contact with fresh mixture in a scavenging port. However, a loop scavenging may be considered as combustion chamber of a free piston $H_2$ engine from the point of view that backfire does not occur nearby lean equivalence ratio obtained high thermal efficiency. It was also analyzed that an advances of backfire occurrence timing with increase of the fuel-air equivalence ratio were due to promotion of flame propagation into piston crevice volumes by decrease of the quenching distance.