• Title/Summary/Keyword: Air flow characteristics

Search Result 2,469, Processing Time 0.032 seconds

Airflow Characteristics of Natural Air Drying for Rough Rice (벼 상온통풍건조시설의 송풍특성)

  • Lee, Hyo-Jai;Kim, Hoon;Han, Jae-Woong
    • The Korean Journal of Community Living Science
    • /
    • v.24 no.3
    • /
    • pp.391-397
    • /
    • 2013
  • This study was conducted to define the characteristics of the fan according to the bed depth of rough rice for the silo used in South Korea. In this study, the characteristics like air flow resistance and air flow rate of the fan were investigated for an independent blowing system with 1 fan and the serial blowing system with 2 fans. In the experiment, the depth of rough rice was determined by 0, 1, 2, 3.2 and 4.5 m for an independent blowing system and the depth of rough rice was 4.5 m for the serial blowing system. The air flow resistances of the blowing fan and the suction fan in an independent blowing system were 55 mmAq and 88 mmAq respectively. In addition, the air flow resistance of the serial blowing system was 61% lower than the blowing fan and 28% lower than the suction fan of the independent blowing system. The air flow rates of the blowing fan and the suction fan in the serial blowing system were 516 $m^3/min$, 570 $m^3/min$, respectively. The former was 22% higher than the blowing fan while the latter was 29% higher than the suction fan in the independence blowing system. In other words, the serial blowing system was superior to the independent blowing system in blowing characteristics because the air flow rate was lower and air flow resistance was higher than the independent blowing system. However, the fan power consumption of the serial blowing system was more than 100% comparing with the independent blowing system.

Analysis of Combustion Air Flow in Incinerator (소각로의 연소 공기 유동 해석)

  • Lee, Dong-Hyuk
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.26-32
    • /
    • 2022
  • It is known that the fluidized bed incinerator, which is the subject of analysis, shows excellent performance in heat and mass transfer due to excellent mixing and contact performance between fluidized sand and fuel, and also shows relatively good combustion characteristics thanks to good mixing and long residence time for low-grade fuels. have. In this study, air flow analysis is performed to understand the characteristics of co-firing of sludge, waste oil and solid waste in the fluidized bed incinerator, flow characteristics of flue gas, and discharge characteristics of pollutants.The fluidized bed incinerator subject to analysis is a facility that incinerates factory waste and general household waste together with sludge, with a processing capacity of 32 tons/day. to be. In addition, the operation method was designed for continuous operation for 24 hours. As a result, it can be seen that the lower combustion air and the introduced secondary air are changed to a strong turbulence and swirl flow form and exit through the outlet while rotating inside the freeboard layer. The homogeneous one-way flow form before reaching the secondary air nozzle has very high diffusivity with the high-speed jet flow of the nozzle.

Numerical study on the flow characteristics in Air-conditioner duct of EMU (전동차 공조기 덕트 내의 유동특성에 관한 수치해석적 연구)

  • Kim Seung-Tech;Kim Sung-Jong;Park Geun-Soo;Park Hyung-Soon
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.345-350
    • /
    • 2003
  • The inside of EMU is supplied with the cooling air from air-conditioner and the fresh air from exterior through the air-conditioner duct which is one of the air conditioning system. The shape of air-conditioner duct is a major factor in determining the air-conditioning efficiency, thermal comfort and energy efficiency. Therefore, this study is to understand the flow characteristics in the air-conditioner duct by three dimensional numerical simulation. The air-conditioner duct was calculated for the design volume flow rate, $2,726\;m^3/h/unit$. From the result of calculation and measurement, the velocity at diffuser outlet presented good agreement in general. [n this present study, the calculation was also performed for three volume flow rate(1,800, 2,200, 3,000 $m^3/h/unit$) and total pressure characteristic curve with volume flow rate was presented.

  • PDF

Simulation Model for Drying Characteristics of Batch-type Tunnel Dryer (배치식 터널 건조기의 고추 건조 시뮬레이션 모델 연구)

  • 황규준;고학균;홍지향;김종순
    • Journal of Biosystems Engineering
    • /
    • v.25 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • In this study, experiments were performed for various drying air temperatures, air flow rates tray distance to analyze drying characteristics of batch type tunnel dryer. In comparison of tunnel drying with cabinet drying which is currently used in the farm, the results of drying simulation model of cabinet dryer was used and then the possibility of applying the drying simulation model of cabinet dryer to batch type tunnel dryer was investigated. The results showed that as the drying temperature increased, the drying rte and moisture difference in the direction of air flow increased and as the air flow rate increased, the drying rate increased and moisture differences decreased. In tunnel dryer, drying through bottom of the tray had large effect on drying rate and the effect was more significant when the drying temperature increased. As air flow rate increased, the difference of drying rates between tunnel and cabinet drying increased and drying rate of tunnel of drying was higher. The drying simulation model could estimate moisture content in tunnel more precisely by using modified effective moisture diffusion coefficient for air flow rate.

  • PDF

Flow Characteristics of Polluted Air in a Rectangular Tunnel using PIV and CFD

  • Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.609-617
    • /
    • 2012
  • The flow characteristics of polluted air are analysed by comparing the results obtained from PIV(Particle Image Velocimetry) experiment and CFD(Computational Fluid Dynamics) commercial code. In order to simulate the polluted air flow, the olive oil has been used as tracer particles with the kinematic viscosity of air, $1.51{\times}10^{-5}m^2/s$. The investigation has done in the range of Reynolds numbers of 870, 1730 and 2890 due to the inlet flow velocities of 0.3, 0.6, and 1.0 m/s, respectively. The average velocity and the pressure distributions are comparatively discussed with respect to the three different Reynolds numbers. The results show that the outlet flow rates at three different Reynolds numbers are equivalent of 165 to 167 percent of the inlet ones. The pressure drop occurs in the model closed at both end sides and the highest pressures at each Reynolds number are positioned at the top of the tunnel between the inlet and outlet.

A Study on the Break-down Characteristics of a Screw-type Centrifugal Pump due to Air Entrainment (공기흡입에 의한 스크류식 원심펌프의 양수불능 특성에 관한 연구)

  • Kim, You-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.58-63
    • /
    • 2003
  • The performance of turbo pump drops rapidly and it gets into break-down when the void fraction reaches above the threshold value because the impeller flow passage is choked up with air bubbles. Phenomenological understanding of break-down and pumping recovery mechanisms under air-water two-phase flow conditions are therefore important for pump designers and essential assignment for researchers. In this paper, we investigated the characteristics of break-down and pumping recovery due to entrained air occurring inside a screw-type centrifugal pump which has a wide flow passage mainly through the findings of suction and discharge pressures, rotational speed, flow rate measurements and visualization.

An Experimental Study on the Centrifugal Pump Characteristics in Air-Water Two-Phase Flow (기액 이상류시의 원심펌프특성에 관한 실험적 연구)

  • Kim, Sung-Yoon;Lee, Sang-Il;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.685-692
    • /
    • 2006
  • In a general centrifugal pump, if it is operated in a two-phase flow the activity of the impeller usually degrades and occasionally losses its function. However, the effect of break down of centrifugal pump due to entrained air has not been clarified yet. This paper shows the air-water two-phase flow characteristics of closed type and semi-open type impellers. In a sing1e-phase flow, closed-type impeller has higher efficiency and head. But in air-water two-phase flow semi-open type impeller's rates of decreases of efficiency and head are decreased.

Experimental Study on Air Flow Characteristics of Axial Dual-blade Fan (축류형 이중 블레이드 팬의 공기 유동 특성에 관한 실험적 연구)

  • Kim, Hae-Ji;Lee, Yong-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.113-120
    • /
    • 2014
  • To ventilate indoor spaces, axial single-blade fans are widely used in various areas, such as schools, houses, offices, and restaurants. Recently, axial single-blade fans were developed to realize energy efficiency and noise reduction improvements. Here, an experimental study of the air flow characteristics of an axial dual-blade fan is conducted. The characteristics of the axial dual-blade fan were tested via an air flow analysis and with prototypes. For the performance of the fan, the flow rate, power consumption, and noise were evaluated. The result showed that the axial dual-blade fan uses less power and produces less noise in comparison with an axial single-blade fan.

A Study on the Flow Field Characteristics of Air Induction System for Reducing the Signal-to-Noise in the MAFS Output

  • Yoo, Seoung-Chool
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • This study presents the flow visualization results, velocity and turbulence intensity measurements made within an air filter cover and entry region of a mass air flow sensor (MAFS) which is used in an induction system of 3.8L engine. Flow structure in two air filter cover assemblies were examined. The first was a clear plastic replica of the production cover while the second was a modified clear plastic cover with a geometry configured to reduce fluctuations. High speed flow visualization and laser doppler velocimetry (LDV) systems were used to reveal and analyze the flow field characteristics encountered in the sensor design process under steady flow conditions. A 40-watt copper vapor laser was used as a light source. Its beam is focused down to a sheet of light approximately 1.5mm thick. The light scattered off the particles was recorded by a 16mm high speed rotating prism camera at 5000 frames per second. A comparison of the flow patterns and LDV measurements in the original and modified air filter covers is presented to illustrate the controlling effect of the cover design on the turbulence structure formation near the bypass and on the sensor output signal. In both axial and radial planes of the main passage it was found that the turbulence flow pattern is remarkably influenced by the air filter cover and main passage configuration.

  • PDF

An Experimental Study of the Influences of Basic Design Parameters on the Performance and the Noise Characteristics of Cross-flow Fans (직교류 홴의 설계인자가 성능 및 소음 특성에 미치는 영향에 대한 실험적 연구)

  • 구형모
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.430-436
    • /
    • 2000
  • The cross-flow fans have been widely used to constitute the air moving systems in many air-ventilating and air-conditioning units. The cross-flow fan system has many design parameters which have crucial influence on the performance and the noise characteristics of the units. As a result there are many difficulties in the design stage of the system and the general design guide has not been sufficiently established yet. This study presents the experimental results of the parametric investigation of some chosen design parameters which are directly related to the shape of the stabilizer the profile of the scroll casing and the diffusion angle of the flow exit. The results are expressed in terms of the fan performance and the specific sound pressure level characteristics. Some parameters have been found to have crucial effects on the system performance/noise characteristics and should be considered with care in the design stage.

  • PDF