• Title/Summary/Keyword: Air flow characteristics

Search Result 2,469, Processing Time 0.033 seconds

A Study on Noise Reduction of Rotary Compressor (공조용 로터리 압축기의 소음 저감에 관한 연구)

  • Ahn, B.H.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.60-69
    • /
    • 1999
  • The noise and vibration sources of rotary compressor for room air-conditioner are pressure pulsation of compression process, cavity resonance of inner space, structural radiation noise of shell and impact noise of discharge valve. Among them, pressure pulsation is very important noise and vibration source. Because it transferred various kinds of noise and vibration like as mentioned above. In this reason, muffler and resonator are used in order to absorb and remove these noises. But an analytical prediction using acoustic analysis does not coincident with the experimental result. The difference between analysis and actual state is due to the assumption of analysis. This paper covered with new concept of muffler design based on the turbulence kinetic energy of flow by using CFD. From this analysis, it is possible to decide the best position of discharge port of muffler. Therefore $2{\sim}3dB$ noise reduction effect is acquired in rotary compressor of 5000 BTU grade. Also new approach of resonator design is suggested. From this study, the characteristics of resonator and surge hole (a kind of resonator without pipe length) are identified. The former is useful for pure tone noise (narrow frequency band), and the latter is effective for broad frequency band. This paper shows that it is very available to use 3 dimensional analysis of resonator in order to predict more exact tuning frequency. The result is proved by a lot of experiments. From combination of fluid analysis and acoustic analysis, up stream position is effective location of resonator concerning turbulence motion of fluid.

  • PDF

Experimental Assessment of Drag Torque of Wet Clutch (습식 클러치 드래그 토크 특성의 실험적 평가)

  • Kim, Hansol;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.269-274
    • /
    • 2017
  • Currently, fuel efficiency becomes one of critical issues for automotive industries as concerns about environmental and energy problems grow. In an automatic transmission of an automobile, a drag torque due to a viscous drag of a fluid between friction and clutch plates is one of factors that degrade fuel economy. In this work, the drag torque characteristics of a wet clutch was experimentally investigated with respect to rotational speed, temperature of automatic transmission fluid (ATF), and gap between friction and clutch plates. The experimental results showed that drag torque increases to a certain level, and then decrease to the steady state value with increasing rotational speed. This behavior may be associated with two-phase flow of air and ATF at gap between friction and clutch plates. Also, it was found that the maximum drag torque value decreased as ATF viscosity decreases with increasing temperature. However, it was shown that the point at which the maximum drag torque occurs was not significantly affected by the ATF temperature. In addition, maximum drag torque was found to decrease as the gap between friction and clutch plates increased from 0.1 mm to 0.2 mm. Furthermore, it was observed that the generation of maximum drag torque was delayed as the gap increased. The outcomes of this work are expected to be helpful to gain a better understanding of drag torque characteristic of a wet clutch, and may therefore be useful in the design of wet clutch systems with improved performance.

A Study on Truncated Flapped Airfoil for Efficient Icing Wind Tunnel Test (효율적 결빙 시험을 위한 절단 익형 형상 연구)

  • Jung, Sung-Ki;Lee, Chang-Hoon;Nagdewe, Suryakant;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.481-486
    • /
    • 2011
  • The evaluation of supercooled water droplet impingement characteristics of full-scale aircraft components in wind tunnels under icing conditions has been severely limited by the relative size of the component and the test facility. The concept of truncated airfoil sections has been suggested in order to extend the operational range of icing tunnels. With proper deflection of the small trailing-edge flap on the truncated airfoil the local pressure distribution may remain very close to that of the full-scale airfoil. In this study the shape of a truncated flapped airfoil is investigated for various deflection angles. To validate the truncated flapped airfoils, air flow and collection efficiency over the truncated airfoil are compared with the results of the full-scale airfoil obtained from the state-of-the-art icing simulation code.

Fabrication and Characterization of LPCVD $P_2O_5-SiO_2$ Films for Inegrated Optics (1) -LPCVD of TEOS and TMPite (LPCVD $P_2O_5-SiO_2$ 집적광학박막의 제작 및 특성 연구(1) -TEOS와 TMPite의 LPCVD-)

  • 정환재
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.266-275
    • /
    • 1993
  • We made $P_2O_5-SiO_2$ films on silicon for integrated optics application by low pressure chemical vapor deposition using TEOS (tetraethylorthosilicate) and TMPite (trimethylphosphite) and studied the deposition characteristics. The activation energy of the reaction was changed from 54.6 kcal/mole to 39.2 kcal/mole by incorporating the TMPite into the reaction of TEOS. The deposition rate and the P concentration of films increased in proportion to the flow of TMPite. As the deposition temperature increased, the deposition rate of the films increased but the P concentration decreased. The fabricated films showed the increase of refractive index of 0.0019 per 1 wt% of P concentration. The nonuniformity of films was ${\pm}$7% in thickness and ${\pm}$0.5wt% in P concentration and we showed this'nonuniformity is due to the nonuniform transport of TMPite. The films of more than 10wt% P concentration developed phosphoric acid on its surface when exposed to air for long time.

  • PDF

A Case Study of Heavy Snowfall with Thunder and Lightning in Youngdong Area (뇌전을 동반한 영동지역 대설 사례연구)

  • Kim, Hae-Min;Jung, Sueng-Pill;In, So-Ra;Choi, Byoung-Choel
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.187-200
    • /
    • 2018
  • The heavy snowfall phenomenon with thunder and lightning occurred in Yeongdong coastal region on 20 January 2017. Amount of snow on that day was a maximum of 47 cm and was concentrated in a short time (2 hours) at the Yeongdong coastal area. The mechanism of thundersnow was investigated to describe in detail using observational data and numerical simulation (Weather Research and Forecast, WRF) applied lightning option. The results show that a convective cloud occurred at the Yeongdong coastal area. The east wind flow was generated and the pressure gradient force was maximized by the rapidly developed cyclone. The cold and dry air in the upper atmosphere has descended (so called tropopause folding) atmospheric lower layer at precipitation peak time (1200 LST). In addition, latent heat in the lower atmosphere layer and warm sea surface temperature caused thermal instability. The convective cloud caused by the strong thermal instability was developed up to 6 km at that time. And the backdoor cold front was determined by the change characteristics of meteorological elements and shear line in the east sea. Instability indexes such as Total totals Index (TT) and Lightning Potential Index (LPI) are also confirmed as one of good predictability indicates for the explosive precipitation of convective rainfall.

Performance analysis for the Characteristics of Double Stage Evaporator/Absorber for Large temperature Difference Absorption System (흡수식 대온도차 시스템에서 2단 증발/흡수기의 성능 특성에 관한 수치적 연구)

  • Park, Chan-Woo;Kang, Yong-Tae;Im, Ick-Tae;Moon, Sang-Done
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.304-308
    • /
    • 2008
  • The optimal design of two stage evaporation & absorption system which is related to the large temperature difference system was investigated numerically in the absorption refrigeration system. The concentrations at inlet & oulet of absorber are 62.9% and 56.9%, but in two stage absorption system the values are 62.2% and 56.2%. Therefore strong solution & weak solution became diluted than the standard value. The amount of weak solution circulation can be reduced in absorption refrigeration system, and the sensible heat load is more reduced to enhance the COP of system. As UAR is increased, COP becomes larger, and this means the role of top section is more important than bottom section in two stage evaporation & absorption system. But the increase of COP becomes slower at 0.7 of UAR ratio. The performance of Type2 is higher than Type1 in COP with the flow direction of cooling waters. This phenomena is due to the active absorption of vapor -absorption & lower temp. cooling water is more effective. The pressure at bottom section becomes higher & that at top section becomes lower and therefore the circulation rate can be diminished more.

  • PDF

Development of BGA Interconnection Process Using Solderable Anisotropic Conductive Adhesives (Solderable 이방성 도전성 접착제를 이용한 BGA 접합공정 개발)

  • Yim, Byung-Seung;Lee, Jeong Il;Oh, Seung Hoon;Chae, Jong-Yi;Hwang, Min Sub;Kim, Jong-Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.10-15
    • /
    • 2016
  • In this paper, novel ball grid array (BGA) interconnection process using solderable anisotropic conductive adhesives (SACAs) with low-melting-point alloy (LMPA) fillers have been developed to enhance the processability in the conventional capillary underfill technique and to overcome the limitations in the no-flow underfill technique. To confirm the feasibility of the proposed technique, BGA interconnection test was performed using two types of SACA with different LMPA concentration (0 and 4 vol%). After the interconnection process, the interconnection characteristics such as morphology of conduction path and electrical properties of BGA assemblies were inspected and compared. The results indicated that BGA assemblies using SACA without LMPA fillers showed weak conduction path formation such as solder bump loss or short circuit formation because of the expansion of air bubbles within the interconnection area due to the relatively high reflow peak temperature. Meanwhile, assemblies using SACA with 4 vol% LMPAs showed stable metallurgical interconnection formation and electrical resistance due to the favorable selective wetting behavior of molten LMPAs for the solder bump and Cu metallization.

Application of Images and Data of Satellite to a Conceptual Model for Heavy Rainfall Analysis (호우사례 분석을 위한 개념모델 구성에 위성영상과 위성자료의 활용 연구)

  • Lee, Kwang-Jae;Heo, Ki-Young;Suh, Ae-Sook;Park, Jong-Seo;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.20 no.2
    • /
    • pp.131-151
    • /
    • 2010
  • This study establishes a conceptual model to analyze heavy rainfall events in Korea using multi-functional transport satellite-1R satellite images. Three heavy rainfall episodes in two major synoptic types, such as synoptic low (SL) type and synoptic flow convergence (SC) type, are analyzed through a conceptual model procedure which proceeds on two steps: 1) conveyer belt model analysis to detect convective area, and 2) cloud top temperature analysis from black body temperature (TBB) data to distinguish convective cloud from stratiform cloud, and eventually estimate heavy rainfall area and intensity. Major synoptic patterns causing heavy rainfall are Changma, synoptic low approach, upper level low in the SL type, and upper level low, indirect effect of typhoon, convergence of tropical air in the SC type. The relationship between rainfall and TBBs in overall well resolved areas of heavy rainfall. The SC type tended to underestimate the intensity of heavy rainfall, but the analysis with the use of water vapor channel has improved the performance. The conceptual model improved a concrete utilization of images and data of satellite, as summarizing characteristics of major synoptic type causing heavy rainfall and composing an algorism to assess the area and intensity of heavy rainfall. The further assessment with various cases is required for the operational use.

Effect of the Various Admixtures to Improvement of Concrete Using Over-added Blast Furnace Slag at Early Age (고로슬래그 미분말을 다량 사용한 콘크리트의 초기품질 향상에 미치는 각종 혼합재료의 영향)

  • Lee, Ju-Sun;Pei, Chang-Chun;Ryu, Gum-Sung;Koh, Kyung-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.733-736
    • /
    • 2008
  • This study, with the purpose for early quality improvement of concrete which used large quantity of fly ash, changed various admixture material type and reviewed the basic characteristics. First off, the flow overall was highest when polycarb onic Acid high early strength AE water reducing agent was displaced, while air amount satisfied target level only in the case of plain, and setting time was shown best by getting 30 more minutes than plain and about 3 more hours than conventional when KOH is displaced. Compressive strength was shown best at age 1 day and 3 days when KOH was displaced, and at age 28 days when fine particle cement was displaced. By and large, this study concludes that concrete quality improvement admixture material that used large amount of fly ash showed worse effects than plain, therefore it is determined that there need be more study for development of concrete early quality improvement admixture material that used large amount of fly ash.

  • PDF

Improvement of the Quality on High Volume Fly-Ash Concrete Corresponding to the Addition of Various Admixtures (각종 혼합재료의 첨가에 따른 플라이애쉬 다량 사용 콘크리트의 초기품질 향상)

  • Lee, Ju-Sun;Pei, Chang-Chun;Ryu, Gum-Sung;Koh, Kyung-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.737-740
    • /
    • 2008
  • This study, with the purpose for early quality improvement of concrete which used large quantity of fly ash, changed various admixture material type and reviewed the basic characteristics. First off, the flow overall was highest when polycarb onic Acid high early strength AE water reducing agent was displaced, while air amount satisfied target level only in the case of plain, and setting time was shown best by getting 30 more minutes than plain and about 3 more hours than conventional when KOH is displaced. Compressive strength was shown best at age 1 day and 3 days when KOH was displaced, and at age 28 days when fine particle cement was displaced. By and large, this study concludes that concrete quality improvement admixture material that used large amount of fly ash showed worse effects than plain, therefore it is determined that there need be more study for development of concrete early quality improvement admixture material that used large amount of fly ash.

  • PDF