• Title/Summary/Keyword: Air flow

Search Result 6,975, Processing Time 0.035 seconds

An Experimental Analysis of the Flow Field in an Air Induction System by Flow Visualization and LDV Measurements (유동 가시화와 LDV 측정을 이용한 흡기계 내의 유동장에 관한 실험적 해석)

  • 유성출
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.102-111
    • /
    • 2001
  • To describe the air flow characteristics within an air cleaner cover and mass air flow sensor (MAFS) entry region installed in a 3.0L engine air induction system, flow visualization, velocity and turbulence intensity measurements were taken in several view planes. A detailed knowledge of the interaction between the design parameters and the flow structures will enhance our understanding of the motions within the flow field and enable engineers to optimize the induction system and reduce the signal-to-noise ratio in the MAFS output. Emphasis is placed on the analysis of coherent motions and the controlling parameters which affect the air flow in the MAFS entrance region over a flow rate of 13-240 kg/hr. The high speed motion pictures illustrated that the air flow generated within the air cleaner cover under steady state condition is quite complex. In both axial and radial planes of the main passage it was found that the flow pattern is remarkably influenced by the air cleaner cover and main passage configuration. A comparison of the flow patterns and measurements in the original and modified air cleaner cover is presented. Measurements from the MAFS indicated an significant reduction in pressure drop and signal noise for the modified cover as compared with the original cover, over an air flow rate of 13-240 kg/hr.

  • PDF

Analysis on Particle Cleaning Capacity of Indoor Air Cleaners for Different Flow Rates Considering Energy Consumption (에너지소비를 고려한 실내공기청정기의 풍량별 입자 청정화능력 분석)

  • Han, Bangwoo;Kang, Ji-Su;Kim, Hak-Joon;Kim, Yong-Jin;Won, Hyosig
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.139-147
    • /
    • 2013
  • The performances of indoor air cleaners including particle cleaning capacity and collection efficiency are usually tested at the condition of the maximum air flow rate of the air cleaners. However, the power consumption of the air cleaners is highly dependent on the air flow rate of the individual air cleaners. Therefore, there seems to be an optimized air flow rate for the air cleaning capacity considering power consumption. In this study, clean air delivery rate(or standard useful area as suggested room size) and power consumption have been investigated for different maximum air flow rates of 15 air cleaners and then compared those for different air flow rate modes of the individual 5 air cleaners selected from the 15 cleaners. For the maximum air flow rate conditions of 15 air cleansers, the power consumption per unit area was less related to the maximum air flow rate. However, for the different air flow rate modes of the selected 5 air cleaners, the lower power consumption per unit area was corresponding to the lower air flow rate mode of the individual air cleaners. When considering the operation time to the desired particle concentrations, there was an optimized one in the medium air flow rate modes for the individual air cleaners. Therefore, not only the maximum air flow rate but also lower air flow rates of individual air cleaners should be considered for estimating air cleaning capacity based on energy consumption per unit area.

Study on Behavior of Spray and Spark Channel by Air Flow Characteristics According to Operating Conditions in Gasoline Direct Injection Engine (가솔린 직분사 엔진에서 운전 조건에 따른 공기 유동 특성에 의한 분무 거동 및 점화 채널에 관한 연구)

  • Hoseung Yi;Sungwook Park
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.198-206
    • /
    • 2023
  • In this study, visualization of in-cylinder spray behavior and spark channel stretching by air flow characteristics depending on engine operating conditions were investigated. For in-cylinder spray behavior, increase in engine rpm did not alter the counter-clockwise air flow direction and location of in-cylinder dominant air flow but increased average air flow velocity, which hindered spray propagation parallel to the piston surface. When injection timing was retarded, direction of in-cylinder dominant air flow was changed, and average air flow velocity was reduced resulting in an increase in spray penetration length and change in direction. For spark channel stretching, increase in air flow speed did not affect spark channel stretch direction but affected length due to increase in spark channel resistance and limitation of energy ignition coil can handle. Change in air flow direction affected spark channel stretch direction where the air flow was obstructed by ground electrode which caused spark channel direction to occur in the opposing direction of air flow. It also affected spark channel stretch length due to change in air flow speed around the spark plug electrode from the interaction between the air flow and ground electrode.

An Experimental Study of the Air Flow Rate Characteristics at Steady State in an SI Engine (SI엔진의 정상상태 유량 특성에 관한 실험적 연구)

  • 박경석;고상근;노승탁;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.1-12
    • /
    • 1997
  • In an SI engine, the characteristics of the air flow is important not only for the design of the intake system geometry but also for the accurate measurement of the induction air mass. In this study, an air flow rate measurement using the ultrasonic flow meter and hot wire flow meter was conducted at the upstream of the intake port and the throttle. At the upstream of the intake port, the pulsating flow into the cylinder affected by the pressure wave was detected directly with the flow meters instead of pressure sensors. At the upstream of the throttle, the reverse flow phenomena were showed by comparing the flow pattern measured by the hot wire air flow meter and the ultrasonic air flow meter. The results of this study can be used for the analysis of the tuning effect in the intake manifold and estimation of the error in real time measurement for the air flow rate.

  • PDF

Estimation of Inlet Air Mass Flow for Air-Fuel Raito Control of Gaseous-Fuel Engines (기체연료 엔진에서 공연비제어를 위한 흡입공기량 추정)

  • 심한섭;이강윤;선우명호;송창섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.131-139
    • /
    • 2001
  • Highly accurate control of the air-fuel ratio is important to reduce exhaust gas emissions of the gaseous-fuel engines. In order to achieve this purpose, inlet air mass flow must be measured exactly, and precise engine models are necessary to design engine control systems. In this paper, the effects of water vapor and gaseous fuel that change the air mass flow are studied. The effective air mass ratio is defined as the air mass flow divided by the mixture mass flow, and also it is applied to the estimation of the inlet air mass flow. The presence of the gaseous fuel and the water vapor in the mixture reduces the air partial pressure and the effective air mass ratio of the gaseous-fuel engines. The Experimental results for an LPG engine show that the estimation of the inlet ai mass flow based upon the effective air mass ratio is more accurate than that of the normal air mass flow.

  • PDF

Characteristics of the Air Flow Variation by Throttle Step Change in a Gasoline Engine (스로틀 개폐에 따른 가솔린 엔진의 비정상상태 유량변화 특성)

  • 박경석;고상근;노승탁;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.92-101
    • /
    • 1996
  • In a gasoline engine, the characteristics of air flow is very important not only for the design of the intake system geometry bout also for the accurate measurement of the induction air mass. In this study, an air flow rate measurement of the induction air mass. In this study, an air flow rate measurement was conducted by using the hot wire flow meter at the upstream of the intake port and the throttle. At the upstream of the throttle, the overshoot phenomena of the air flow rate by fast throttle opening were analyzed with choked flow. At the upstream of the intake port, the cylinder variation of the air flow rate and the difference between fast throttle opening and closing were showed during the unsteady state by the throttle step change. The results of this study can be used for the design of the throttle valve geometry and cylinder by cylinder control.

  • PDF

Assessment of Air Flow Misalignment Effects on Fume Particle Removal in Optical Plastic Film Cutting Process

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.51-58
    • /
    • 2020
  • Many types of optical plastic films are essential in optoelectronics display unit fabrication and it is important to develop high precision laser cutting methods of optical films with extremely low level of film surface contamination by fume particles. This study investigates the effects of suction and blowing air motions with air flow misalignment in removing fume particles from laser cut line by employing random particle trajectory simulation and probabilistic particle generation model. The computational results show fume particle dispersion behaviors on optical film under suction and blowing air flow conditions. It is found that suction air flow motion is more advantageous to blowing air motion in reducing film surface contamination outside designated target margin from laser cut line. While air flow misalignment adversely affects particle dispersion in blowing air flows, its effects become much more complicated in suction air flows by showing different particle dispersion patterns around laser cut line. It is required to have more careful air flow alignment in fume particle removal under suction air flow conditions.

Sensitivity of Hot Film Flow Meter in Four Stroke Gasoline Engine

  • Lee, Gangyoung;Lee, Cha--Myung;Park, Simsoo;Youngjin Cho
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.286-293
    • /
    • 2004
  • The air fuel ratios of current gasoline engines are almost controlled by several air flow meters. When CVVT (Continuous Variable Valve Timing) is applied to a gasoline engine for higher engine performance, the MAP (Manifold Absolute Pressure) sensor is difficult to follow the instantaneous air fuel ratio due to the valve timing effect. Therefore, a HFM (Hot Film Flow Meter) is widely used for measuring intake air flow in this case. However, the HFMs are incapable of indicating to reverse flow, the oscillation of intake air flow has an negative effect on the precision of the HFM. Consequently, the various duct configurations in front of the air flow sensor affect the precision of HFM sensitivity. This paper mainly focused on the analysis of the reverse flow, flow fluctuation in throttle upstream and the geometry of intake system which influence the HFM measurement.

Performance Enhancement of a PEMFC by Modification of Air Inlet Flow Header Configuration (공기측 입구헤더의 형상 개선을 통한 고분자 전해질 연료전지의 성능 향상)

  • Kim, Won-Nyun;Kim, Yun-Ho;Kim, Seo-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.4
    • /
    • pp.339-345
    • /
    • 2007
  • In the present study, a 10-cell PEMFC stack with straight type cathode flow channels is employed to investigate the effect of inlet air flow header configuration on the overall fuel cell performance. Four different types of inlet flow headers are considered and the flow patterns according to the air inlet flow header configuration are numerically obtained. The computed result for a modified header predicts about 8.5% improvement in the air flow distribution at 10-cell cathode channel inlets. Experiments are also carried out to confirm the numerical findings by measuring actual air flow distributions and the polarization curves of the PEMFC stack.

Air Flow Sensor with Corrugation Structure for Low Air Velocity Detection (주름구조를 적용한 저속 유속 센서)

  • Choi, Dae-Keun;Lee, Sang-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.393-399
    • /
    • 2011
  • In this paper, we designed and fabricated the novel air flow sensor using air drag force, which can be applied to the low air flow detection. To measure the low air flow, we should enlarge the air drag force and the output signal at the given air flow. The paddle structure is applied to the device, and the device is vertically located against the air flow to magnify the air drag force. We also adapt the corrugation structure to improve the output signals on the given air velocity. The device structure is made up of the silicon nitride layer and the output signal is measured with the piezoresistive layer. The output signals from the corrugated device show the better measurement sensitivity and the response time than that of flat one. The repeated measurement also shows the stabilized signals.