• Title/Summary/Keyword: Air exposure

Search Result 1,346, Processing Time 0.023 seconds

Indoor Air Quality in Aircraft: The Impact of Increased Mobility and Health Effects and the Influence of Bleed Air (항공기 내 실내공기질에 관한 고찰: 이동의 증가와 건강에 미치는 영향 및 블리드에어의 영향)

  • Seunghon Ham
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.3
    • /
    • pp.129-133
    • /
    • 2023
  • Background: With the rise in global mobility, aircraft indoor air quality has become a significant public health concern. This study focuses on the health implications of increased travel and bleed air-air drawn from aircraft engines for cabin pressurization and air conditioning. Objectives: This research aims to review the potential health effects related to exposure to aircraft cabin air, particularly the effects of bleed air during fume events. Methods: We conducted a literature review of existing studies on aircraft cabin air quality. We focused on both the immediate and health effects of exposure to cabin air, particularly those related to bleed air contaminants. Results: The review found a possible link between exposure to aircraft cabin air and certain health issues, especially in cabin crew and frequent flyers. There was an increased incidence of respiratory and neurological symptoms related to bleed air exposure. However, the cumulative health effects of frequent air travel remain inconclusive due to limited data. Conclusions: This study highlights the need for improving air quality in aircraft to protect public health. While further research is needed to understand the cumulative effects of frequent air travel, the reduction of exposure to bleed air contaminants should be a priority. These findings underline the need for regulatory changes and technological improvements in aircraft cabin air quality.

Adverse Effects of Air Pollution on Pulmonary Diseases

  • Ko, Ui Won;Kyung, Sun Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.4
    • /
    • pp.313-319
    • /
    • 2022
  • Environmental exposure to air pollution is known to have adverse effects on various organs. Air pollution has greater effects on the pulmonary system as the lungs are directly exposed to contaminants in the air. Here, we review the associations of air pollution with the development, morbidity, and mortality of pulmonary diseases. Short-and long-term exposure to air pollution have been shown to increase mortality risk even at concentrations below the current national guidelines. Ambient air pollution has been shown to be associated with lung cancer. Particularly long-term exposure to particulate matter with a diameter <2.5 ㎛ (PM2.5) has been reported to be associated with lung cancer even at low concentrations. In addition, exposure to air pollution has been shown to increase the incidence risk of chronic obstructive pulmonary disease (COPD) and has been correlated with exacerbation and mortality of COPD. Air pollution has also been linked to exacerbation, mortality, and development of asthma. Exposure to nitrogen dioxide (NO2) has been demonstrated to be related to increased mortality in patients with idiopathic pulmonary fibrosis. Additionally, air pollution increases the incidence of infectious diseases, such as pneumonia, bronchitis, and tuberculosis. Furthermore, emerging evidence supports a link between air pollution and coronavirus disease 2019 transmission, susceptibility, severity and mortality. In conclusion, the stringency of air quality guidelines should be increased and further therapeutic trials are required in patients at high risk of adverse health effects of air pollution.

Assessment of Inhalation Exposure to Volatile Disinfection By-products Associated with Household Uses of Chlorinated Tap Water (가정에서의 수돗물 사용과 관련된 휘발성 염소소독부산물에 대한 흡입노출 평가)

  • 김희갑;김문숙;윤지현
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.2
    • /
    • pp.125-133
    • /
    • 2002
  • Volatile disinfection by-products (DBPs) contained in chlorinated tap water are released into household air during indoor activities (showering, cooking, dish -washing, etc.) associated with tap water uses and may cause adverse health effects on humans. Twenty seven subjects were recruited and their homes were visited during the winter of 2002. Tap water, household air, and exhaled breath samples were collected and analyzed for five volatile DBPs (chloroform, bromodichloromethane, dichloroacetonitrile, 1,1 -dichloropropanone and 1,1,1 trichloropropanone). Chloroform was a major DBP found in most samples. Tap water chloroform concentrations were not statistically correlated with its household air concentrations, probably due to individual variability in indoor activities such as showering, cooking, and dish - washing as well as household ventilation. Correlation of breath chloroform concentration with household air chloroform concentration showed its possible use as a biomarker of exposure to household air chloroform. Exposure estimates suggested that inhalation during household stay be a major route of exposure to volatile DBPs and that ingestion of tap water be a trivial contributor to the total exposure in Koreans.

The Expression of Hsp70 and GST Genes in Mytilus coruscus during Air Exposure and Starvation (공기노출 및 절식시기 동안 참담치, Mytilus coruscus 에서 Hsp70 및 GST 유전자 발현에 대한 연구)

  • Kim, Chul Won;Kang, Han Seung
    • The Korean Journal of Malacology
    • /
    • v.32 no.2
    • /
    • pp.73-81
    • /
    • 2016
  • Heat shock proteins (HSPs), one of the most highly conserved groups of proteins characterized to date, play crucial roles in protecting cells against environmental stresses, such as heat shock, salinity and oxidative stress. The glutathione S-transferases (GST) have important role in detoxification of oxidative stress, environmental chemicals and environmental stress. GST mRNA expression have been used as biomarkers on environmental stress. The purpose of this study was to investigate the death rate and the gene expression of Hsp70 and GST during air exposure and starvation. Results showed that, the expression of Hsp70 mRNA was significantly changed in the experiment groups, such as air exposure and starvation. GST mRNA expression was significantly increased in the experimental group of starvation. These results suggest that Hsp70 and GST were played roles in biomarker gene on the air exposure and starvation.

Effect of Non-thermal Dielectric Barrier Discharge Plasma by Air Volume against Mycobacterium Tuberculosis (비열 유전체장벽방전 플라즈마 발생기의 풍량에 따른 결핵균 성장억제 효능)

  • Son, Eun-Soon;Kim, Yonghee;Paik, Namwon;Lee, Ilyong;Kim, Eunhwa;Park, Hae-Ryoung;Lee, Jongseok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.414-419
    • /
    • 2019
  • Objectives: The objective of this study was to evaluate the inhibitory effect of non-thermal dielectric barrier discharge (DBD) plasma by air volume against Mycobacterium tuberculosis (MTB). Methods: Plasma generators (TB-300, Shinyoung Airtec, Seongnam-si, Korea) were operated in a 2A type biosafety cabinet. The plasma generator was set to a wind flow rate of 14 ($80m^3/h$), 18 ($110m^3/h$), and 22 ($150m^3/h$), and exposure times were set to 0 hours, 3 hours, 6 hours, 9 hours, and 24 hours. Results: The inhibitory effects of plasma at air volume 14 with prolonged exposure time of three hours was 20%, 64% at six hours, 82.3% at nine hours, and 100% after 24 hours exposure. With air volume of 18, the inhibitory effects upon plasma exposure were 36% for three hours, and 100% from 24 hours. Greater air volume resulted in greater inhibition of tuberculosis bacterial growth. In particular, the maximum inhibitory effect (100%) was shown in air volume of 22 ($150m^3/h$) after three hours of plasma exposure. Conclusions: The results showed the correlating inhibitory effects of plasma on the growth of MTB in combination with increasing plasma exposure time and air volume.

Health Risk Assessment of Lead Exposure through Multi-pathways in Korea (납의 다경로 노출에 의한 건강위해성평가 : 우리 나라 일부 지역 성인들을 대상으로)

  • Chung, Yong;Hwang, Man-Sik;Yang, Ji-Yeon;Jo, Seong-Joon
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.4
    • /
    • pp.203-216
    • /
    • 1999
  • This paper describes a set of multi-pathway models for estimating health risk to lead. The models link concentrations of an environmental contaminant (lead) in air, water and food to human exposure through inhalation, ingestion, and dietary routes. Exposure is used as the foundation for predicting risk of health detriment within the population. The process of estimating exposure using often limited data and extrapolating to a large diverse population requires many assumption, inferences, and simplification. This paper is divided into four section. The first section provides lead contaminant levels on obtaining environmental concentration of air, tap water, and foods. The second section provides a discussion of exposure parameters and uncertainty associated predicting human health risk of contaminants. The third and fourth section illustrate lifetime average daily exposure (LADE) and excess cancer risk (ECR) based on exposure parameters. The relationship between concentration of lead in an environmental medium and human exposure is determined with pathway exposure factors (PEFs). The calculation of LADE and ECR is carried out using Monte-Carlo simulation with probability density function of exposure parameters. Examination of the result reveals that, for lead exposure, ingestion (food) is the dominant route of exposure rather than inhalation (air), and ingestion (tap eater).

  • PDF

Comparison of Exposure Estimation Methods on Air Pollution of Residents of Industrial Complexes (광양만권 주변지역 주민들의 대기오염 노출추정을 위한 방법론 비교 연구)

  • Jung, Soon-Won;Cho, Yong-Sung;Yang, Won-Ho;Yu, Seung Do;Son, Bu-Soon
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.151-161
    • /
    • 2013
  • The assessment of personal exposure is a critical component in population-based epidemiologic studies of air pollution. This study was conducted to apply and compare the four exposure estimation methods of individual-level to air pollution concentration in a cohort including 2,283 subjects in Gwangyang, Korea. Individual-level exposure of air pollution were estimated using multiple approaches, including average across all monitors, nearest monitor, and spatial interpolation by inverse distance weighting and kriging. The mean concentrations of $PM_{10}$, $NO_2$, $SO_2$, CO, $O_3$ by four exposure estimation methods were slightly different but not significantly different from each other. Cross-validation showed that kriging was more accurate than other exposure estimation methods because kriging has probably predicted individual exposure levels equivalent to residential locations after estimating the parameters of a model according to the spatial surface of air pollution concentration. These data support that spatial interpolation methods may provide better estimates than selecting the value from the nearest monitor and averaging across values from all monitors by reflecting spatial attributes of air pollution on personal level.

Indoor, Outdoor, and Personal Exposure to Nitrogen Dioxide Comparing Industrial Complex Area with Country Area (공단지역과 시골지역 주택 실내, 실외 및 개인의 이산화질소 노출평가)

  • Yang, Won-Ho;Im, Sung-Guk;Son, Bu-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.3
    • /
    • pp.183-187
    • /
    • 2008
  • Indoor air quality can be affected by indoor sources, ventilation, decay, and outdoor levels. Various indoor and out-door combustion sources produce nitrogen dioxide ($NO_2$), which is a by-product of high temperature fossil fuel combustion. Especially, the presence of gas ranges and smoking have been identified as major factors contributing to indoor $NO_2$ exposures. In this study, we compared an industrial complex area with a country area by assessing the personal exposure to $NO_2$with measurements of indoor and outdoor $NO_2$ levels in residences and by house characteristics and questionnaire. Personal exposure concentrations were significantly correlated with indoor $NO_2$ concentrations of residences in both the industrial complex area and the country area with correlation coefficients of 0.561 and 0.664, respectively, compared to outdoors. Multiple regression analysis, indicated that indoor $NO_2$ levels in residences were only affected by outdoor levels (p = 0.000) in spite of higher indoor sources such as smoking. Therefore, it is suggested that outdoor air quality as well as indoor air quality should be considered in the reduction of the personal exposure to air pollutants.

Effect of Air Exposure on ZnO Thin Film for Electron Transport Layer of Quantum Dot Light-Emitting Diode (ZnO 박막 전자수송층의 공기 노출에 의한 양자점 발광다이오드의 특성 변화)

  • Eunyong Seo;Kyungjae Lee;Jeong Ha Hwang;Dong Hyun Kim;Jaehoon Lim;Donggu Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.455-461
    • /
    • 2023
  • We investigated the electrical characteristics of ZnO nanoparticles (NPs) with air exposure that is a widely used electron transport layer for quantum dot light-emitting diodes (QLEDs). Upon air exposure, we observed changes in the density of states (DOS) of the trap levels of ZnO NPs. In particular, with air exposure, the concentration of deep trap energy levels in ZnO NPs decreased and electron mobility significantly improved. Consequently, the air-exposed ZnO reduced leakage current by approximately one order of magnitude and enhanced the external quantum efficiency at the low driving voltage region of the QLED. In addition, based on the excellent conductivity properties, high-brightness QLEDs could be achieved.

Potential Exposure to Air Pollutants for Driver and Its Control Using Commercial Air Cleaning Device Inside Vehicle (차량 운전자의 공기오염물질 잠재적 노출 및 차량용 공기청정기에 의한 제어)

  • Kim Dae-Won;Kim Moon-Hyeon;Yang Won-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.481-486
    • /
    • 2004
  • Vehicle occupant exposure to air pollutants has been a subject of concern in recent years because of higher levels of air pollutants inside gasoline or diesel-using vehicle, comparing to the surrounding atmosphere. Contrary to previous studies, fuel of vehicles operated in this study was liquefied petroleum gas (LPG). This study examined the potential exposure and removal efficiency of selected volatile organic compounds (VOCs), nitrogen dioxide ($NO_2$) and respirable suspended particle (RSP) by commercial air cleaning device inside vehicle under different ventilation conditions. Vehicle concentrations inside of benzene, toluene, m,p-xylene, $NO_2$ and RSP were lower under the low ventilation condition. This was indicated that outdoor air pollutants could affect the vehicle air quality inside in case metropolitan cities such as Daegu. The urban vehicle concentrations inside of benzene, toluene, m,p-xylene, $NO_2$ and RSP with air cleaning device were higher than those without air cleaning device. This means that the use of air cleaning device equipped with activated carbon filter, which was used in this study, in the interior of vehicles could be expected to reduce the vehicle occupants exposure to air pollutants effectively. In batch type reactor of laboratory scale, removal efficiencies of air cleaning device used were $97.0\%,\;95.7\%,\;94.6\%\;and\;85.5\%$ respectively in benzene, toluene, m,p-xylene and $NO_2$.