• 제목/요약/키워드: Air drag reduction

검색결과 76건 처리시간 0.031초

에어댐의 높이가 차체 표면의 압력변화에 미치는 영향 (Effect of the Heights of Air Dam on the Pressure Distribution of the Vehicle Surface)

  • 박종수;김성준
    • 산업기술연구
    • /
    • 제22권B호
    • /
    • pp.27-34
    • /
    • 2002
  • 3-D numerical studies are performed to investigate the effect of the air dam height and approaching air velocities on the pressure distribution of notchback road vehicle. For this purpose, the models of test vehicle with four different air dam heights are introduced and PHOENICS, a commercial CFD code, is used to simulate the flow phenomena and to estimate the values of pressure coefficients along the surface of vehicle. The standard $k-{\varepsilon}$ model is adopted for the simulation of turbulence. The numerical results show that the height variation of air dam makes almost no influence on the distribution of the value of pressure coefficient along upper and rear surface but makes strong effects on the bottom surface. That is, the value of pressure coefficient becomes smaller as the height is increased along the bottom surface. Approaching air velocity makes no differences on pressure coefficients. Through the analysis of pressure coefficient on the vehicle surface, one tries to assess aerodynamic drag and lift of vehicle. The pressure distribution on the bottom surface affects more on lift than the pressure distribution on the upper surface of the vehicle does. The increase of air dam height makes positive effects on the lift decrease but no effects on drag reduction.

  • PDF

고분자물질 첨가에 의한 유동특성에 관한 연구 (A Study on the Characteristics of Flow with Polymer Additives)

  • 차경옥;김재근
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.176-186
    • /
    • 1996
  • The phenomena of drag reduction using small quantities of a liner macromolecules has attracted the attention of many experimental investigations. On the other hand drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to flow with cavitation which occurs pump impellers. But the research on dragreduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction, mean liquid velocity and turbulent intensity whether polymer additives a horizontal single and two phase system or not. Flow pattern of air-water two phase flow was classified by electrical conductivity probe signal. Velocities and turbulent intensities of signal were measured simultaneously with a Hot-film anemometer.

  • PDF

초음속 환경에서 역분사 공기 제트의 압력 변화에 따른 유동 특성 및 항력 감소 (Flow Characteristics and Drag Reduction at Different Pressures of Counterflow Air Jets in Supersonic Flow)

  • 최종인;이재청;강승원;허환일
    • 한국추진공학회지
    • /
    • 제22권1호
    • /
    • pp.58-65
    • /
    • 2018
  • 초고속 비행체의 성능을 향상시키기 위해 비행체 선두부에 대한 연구가 다양하게 수행되고 있다. 본 연구에서는 초음속 영역에서 역분사 공기 제트를 활용하여 유동 특성 및 항력 감소에 대한 실험 연구를 수행하였다. 고속카메라를 활용한 쉴리렌 가시화 방법으로 분사 유동을 가시화 하였으며, 토크센서를 이용해 분사 압력 조건에 따른 항력 변화를 측정하였다. 측정 결과, 분사 압력비 1.58 ~ 1.70 조건에서 비정상 상태의 유동이 정상 상태로 변화하였으며, 역분사 공기 제트의 분사 압력이 높을수록 항력이 감소하는 경향을 보였다.

비이온 계면활성제의 마찰 및 열교환효율 저감 특성 연구 (Study on the Drag Reduction and Heat Transfer Efficiency Reduction of the Non-Ionic Surfactant)

  • 조성환;태춘섭
    • 설비공학논문집
    • /
    • 제19권2호
    • /
    • pp.133-141
    • /
    • 2007
  • The drag reduction (DR) and heat transfer efficiency reduction (HTER) of nonionic surfactant according to the fluid velocity, temperature and surfactant concentration were investigated experimentally. For this study, several kinds of new surfactant which contains amine-oxide and betaine were developed. And experimental apparatus equipped with two water storage tanks temperature controlled, pumps, testing pipe network, two flowmeters, two pressure gauges, heat exchanger, and data logging system was built. Results showed that existing alkyl ammonium surfactant (CTAC) had DR of $0.6{\sim}0.8$ for $1,000{\sim}2,000\;ppm$ in fluid temperature of $50{\sim}60^{\circ}C$ and had very low DR in fluid temperature over $70^{\circ}C$. And new amino oxide and betaine surfactant (SAOB) had lower DR in fluid temperature of $50{\sim}60^{\circ}C$ compared with CTAC but in fluid temperature of $70{\sim}80^{\circ}C$ DR was $0.6{\sim}0.8$ for 1$1,000{\sim}2,000\;ppm$.

Numerical investigation of a novel device for bubble generation to reduce ship drag

  • Zhang, Jun;Yang, Shuo;Liu, Jing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권5호
    • /
    • pp.629-643
    • /
    • 2018
  • For a sailing ship, the frictional resistance exerted on the hull of ship is due to viscous effect of the fluid flow, which is proportional to the wetted area of the hull and moving speed of ship. This resistance can be reduced through air bubble lubrication to the hull. The traditional way of introducing air to the wetted hull consumes extra energy to retain stability of air layer or bubbles. It leads to lower reduction rate of the net frictional resistance. In the present paper, a novel air bubble lubrication technique proposed by Kumagai et al. (2014), the Winged Air Induction Pipe (WAIP) device with opening hole on the upper surface of the hydrofoil is numerically investigated. This device is able to naturally introduce air to be sandwiched between the wetted hull and water. Propulsion system efficiency can be therefore increased by employing the WAIP device to reduce frictional drag. In order to maximize the device performance and explore the underlying physics, parametric study is carried out numerically. Effects of submerged depth of the hydrofoil and properties of the opening holes on the upper surface of the hydrofoil are investigated. The results show that more holes are favourable to reduce frictional drag. 62.85% can be achieved by applying 4 number of holes.

계면활성제에 의한 난류 관내 유동의 마찰감소 현상 (Drag Reduction Phenomena of Surfactant Turbulent Pipe Flows)

  • 윤형기;신광호;장기창;나호상;유성연
    • 설비공학논문집
    • /
    • 제18권12호
    • /
    • pp.1025-1032
    • /
    • 2006
  • This is to characterize the fluid mechanics of surfactant water solutions, which exhibit drag reduction in the turbulent flow as compared to pure water. The emphasis is placed on those fluid characteristic aspects of drag reducing solutions which are relevant for application in closed circulation loops for the purpose of pumping power savings, like hydronic cooling and heating systems in buildings. The experiments are carried out with the solutions of the surfactant Beraid DR-IW 616 in concentration of $100{\sim}3,000ppm$. The following key parameters are focused in this study: surfactant concentration, solution temperature and pipe diameter.

Experimental Study on Drag Reduction Effects of New Non-Ionic Surfactants

  • Tae, Choon-Sub;Cho, Sung-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제14권4호
    • /
    • pp.147-155
    • /
    • 2006
  • The drag reduction (DR) and heat transfer efficiency reduction (ER) of non-ionic surfactant were investigated as a function of fluid velocity, temperature, and surfactant concentration. An experimental apparatus consisting of two temperature controlled water storage tanks, pumps, test specimen pipe and the piping network, two flow meters, two pressure gauges, a heat exchanger, and data logging system was built. From the experimental results, it was concluded that existing alkyl ammonium surfactant (CTAC Cethyl Trimethyl Ammonium Chloride) had DR of $0.6{\sim}0.8$ at $1,000{\sim}2,000ppm$ concentration with fluid temperature ranging between $50{\sim}60^{\circ}C$. However, the DR was very low when the fluid temperature was $70{\sim}80^{\circ}C$. The new amine oxide and betaine surfactant(SAOB Stearyl Amine Oxide + Betaine) had lower DR at fluid temperatures ranging between $50{\sim}60^{\circ}C$ compared with CTAC. However, with fluid temperature ranging between $70{\sim}80^{\circ}C$ the DR was $0.6{\sim}0.8$ when the concentration level was $1,000{\sim}2,000ppm$.

고압 유동조건에서의 액체 램제트 엔진의 분무특성 (Spray Characteristics of a Liquid-fueled Ramjet Engine under High Pressure Air Condition)

  • 윤현진;이충원
    • 한국분무공학회지
    • /
    • 제9권2호
    • /
    • pp.34-40
    • /
    • 2004
  • In a liquid-fueled ramjet engine, the insufficient mixing and evaporation result in the low combustion efficiency and combustion instability. Improving its characteristics and devising a means of fuel droplets with air may compensate these disadvantages of liquid fuel ramjet engine. The jet penetrations of various fuel injectors were measured to investigate the spray characteristics of a liquid-fueled ramjet engine under high pressure air-stream conditions. The penetrations in high pressure conditions are smaller than the values calculated from Inamura's or Lee's equations, and the jet penetrations in the high pressure conditions have a similar tendency. In the dual orifice injectors, the jet penetrations of rare orifice is rapidly increased due to the reduction of the drag, which is created by the jet column of front orifice. The jet penetration of rare orifice is increased because of the drag reduction created by the jet column of the front orifice. Because of the drag reduction formed by the column of jet, the jet penetration in the rear orifice of dual orifice injector is much larger than the jet penetrations of single orifice injector. As the distances of the orifice are increased, the jet penetrations of the rear orifice decrease.

  • PDF

Spray Characteristics of a Liquid-fueled Ramjet Engine under High Pressure Air-stream Conditions

  • Lee, Choong-Won;Youn, Hyun-Jin;Lee, Tae-Hee;Lee, Geun-sun
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.749-752
    • /
    • 2004
  • In a liquid-fueled ramjet engine, the insufficient mixing and evaporation result in the low combustion efficiency and combustion instability. Improving its spray characteristics and devising a means of mixing fuel droplets with air may compensate these disadvantages of liquid fuel ramjet engine. The jet penetrations of various fuel injectors were measured to investigate the spray characteristics of a liquid-fueled ramjet engine under high pressure air-stream conditions. The penetrations in high pressure conditions are smaller than the values calculated from Inamura's or Lee's equations, and, in the high pressure conditions, the jet penetrations are similar each other. In the dual hole injectors, the jet penetrations of rear orifice is rapidly increased due to the reduction of the drag, which is created by the jet column of front orifice. The jet penetration of rear orifice is increased because of the drag reduction created by the jet column of the front orifice. And, because of the drag reduction formed by the column of jet, the jet penetration in the rear orifice of dual hole injector is much larger than the jet penetration of single hole injector. As the distances of the orifice are increased, the jet penetrations of the rear orifice decrease.

  • PDF

계면활성제가 첨가된 관내 난류의 열유동 특성에 관한 고찰 (Fluid and Heat Transfer Characterization of Surfactant Turbulent Pipe Flows)

  • 신광호;윤형기;장기창;나호상
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.982-987
    • /
    • 2006
  • The fluid mechanics and heat transfer of surfactant turbulent pipe flows are characterized with particular emphasis on the effects of surfactant concentration and solution temperature on drag reduction and heat transfer reduction. The test fluids are the surfactant solutions of DR-IW616 supplied by Akzo Nobel Chemical in concentration of $100{\sim}3000ppm$. The solution temperatures studied are $5^{\circ}C$ to $50^{\circ}C$. The critical values of surfactant concentration and solution temperature are clearly identified for drag reduction phenomena.

  • PDF