• Title/Summary/Keyword: Air diffusion

Search Result 879, Processing Time 0.03 seconds

Soot Formation in a Double-Concentric Diffusion Flame (동축 이중 확산화염의 매연 생성 특성)

  • Jurng, Jongsoo;Lee, Gyo-Woo;Ko, Bum-Seung;Kang, Kyung-tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1355-1362
    • /
    • 1999
  • An experimental study on a double-concentric diffusion flame(DDF) has been carried on in order to Investigate the characteristics of soot formation compared to a normal coflow diffusion flame(NDF). Laser extinction technique has been used for an ethylene($C_2H_4$) and air flame with various flow rates. Soot formation In the double-concentric diffusion flame was enhanced by the inner inverse diffusion flame due to the increase in flame temperature and also suppressed due to the nitrogen-dilution from the inner air. Soot concentration at the flame axis of DDF was higher than that of the NDF, mainly because of the increase of temperature by inner flame. However, the maximum soot volume fraction of DDF was lower than NDF at the outer side of the flame, mainly due to the effect of nitrogen-dilution from the inner air.

Combustion Characteristics in Various Primary and Auxiliary Air Flux Conditions at a Coaxial Swirling Diffusion Combustor (동축선회 확산연소기의 1차 및 보조공기유량 변화에 따른 연소배출특성)

  • Lee, Y.S.;Oh, S.W.;Bae, D.S.;Lee, D.H.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.17-23
    • /
    • 2002
  • The purpose of this study is to investigate the combustion emission characteristics changing auxiliary air injection in combustion field of coaxial swirling diffusion combustor. For this purpose, mean temperature, CO, CO2, O2 and HC concentration were measured by changing excess air ratio and auxiliary air injection. As a result of this study, mean temperature, CO2 emission were increased and CO emission decreased by increasing auxiliary air. Therefore, this paper showed the auxiliary air injection effected strongly on flame structure and combustion emission characteristics.

  • PDF

Air-Data Estimation for Air-Breathing Hypersonic Vehicles

  • Kang, Bryan-Heejin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.75-86
    • /
    • 1999
  • An air-data estimator for generic air-breathing hypersonic vehicles (AHSVs) is developed and demonstrated with an example vehicle configuration. The AHSV air-data estimation strategy emphasized improvement of the angle of attack estimate accuracy to a degree necessitated by the stringent operational requirements of the air-breathing propulsion. the resulting estimation problem involves highly nonlinear diffusion process (propagation); consequently, significant distortion of a posteriori conditional density is suspected. A simulation based statistical analysis tool is developed to characterize the nonlinear diffusion process. The statistical analysis results indicate that the diffusion process preserves the symmetry and unimodality of initial probability density shape state variables, and provide the basis for applicability of an Extended Kalman Filter (EKF). An EKF is designed for the AHSV air-data system and the air data estimation capabilities are demonstrated.

  • PDF

The Determination of Diffusion and Partition Coefficients of PUF (폴리우레탄 폼의 휘발성 유기화합물 확산 및 분배계수 산정)

  • Park, Jin-Soo;Little, John C.;Kim, Shin-Do;Lee, Hee-Kwan;Kong, Boo-Ju
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.1
    • /
    • pp.77-84
    • /
    • 2010
  • The diffusion and partition coefficients of polyurethane foam (PUF) are estimated using a microbalance experiment and small chamber test. The microbalance is used to measure sorption/desorption kinetics and equilibrium data. When the diffusion condition is controlled in the chamber of the sample, interactions between volatile organic compounds (VOCs) and PUF can lead to the estimation of a relatively homogenous rate of mass transfer in the interiors and surfaces of PUF. The estimates of the material/air partition coefficient (K) and the material-phase diffusion coefficient (D) are shown to be independent of the concentrations of VOCs. This approach, if applied to a diffusion-controlled or physically-based model, can facilitate more precise prediction of their source/sink behavior. Although further research and more rigorous validation is needed, an emission model applied with the diffusion and partition coefficients from this research holds promise for the improvement of reliability in predicting the behavior of VOCs emitted from porous building materials by D and K.

Experimental study of the combustion emission of diffusion flame and local NO concentration change characteristics in the flame by acoustic excitation (음파 가진을 이용한 확산 화염의 연소 배기와 화염 내부의 국소 NO 농도 변화 특성에 대한 실험적 연구)

  • Bae, Sang-Hun;Oh, Sang-Heon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.137-142
    • /
    • 2001
  • The effects of acoustic excitation with various frequencies for combustion air as well as fuel on the combustion emission and local NO concentration in diffusion flame were investigated experimentally. It was studied to investigate the effects of combination between four frequencies for the fuel and various frequencies for the combustion air. The better characteristic for NO emission was revealed by acoustic exciting with frequencies for the air and the fuel excited at 0Hz and 120Hz and the generation of CO was decreased at low frequency for fuel and the excited combustion air. The amount of combustion emission could be controlled by acoustic exciting of the combustion air. And when both fuel and air are excited by some frequencies, the diffusion flame was affected by frequency which excited fuel in the middle of the flame and by air-exciting frequency at both sides of the flame. The local NO in the flame was generated much less at the condition that fuel was excited by frequencies than the condition was not.

  • PDF

Numerical analysis of chromium deposition through the SOFC cathode channel (고체 산화물 연료전지의 공기극 유로내 크롬 피독에 관한 전산해석)

  • Park, Joon-Guen;Bae, Joong-Myeon;Lee, Shin-Ku;Nabielek, Heinz
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.372-375
    • /
    • 2006
  • SOFC is a high temperature fuelcell with many advantages, but it also have several demerits. One of the Issues is cathode poisoning of Cr coming from stainless steel interconnects. Diffusion process of Cr evaporated from the surface of interconnect steel was calculated by using CFD technique to understand factors for Cr deposition. It has been cleared that factors concerned in Cr deposition and how they affect Cr deposition. Major variables for Cr deposit ion are diffusion coefficient, air velocity and temperature If diffusion coefficient decreases, Cr concentration increases in the air but decreases on the cathode surface. Increasing in air velocity, Cr concentration decreases in the air and on the cathode surface. Increase in temperature leads to rising Cr concentration on the cathode surface because of diffusion coefficient increment.

  • PDF

An experimental study on Influence of Permeability on corrosion of reinforced Concrete (철근콘크리트의 부식에 영향을 미치는 물질 투과성능에 관한 실험적 연구)

  • 김용로;김영덕;조봉석;장종호;권영진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.62-65
    • /
    • 2003
  • In this study, to confirm corrosion of reinforced concrete affected by carbonation, chloride ion diffusion, absorption ratio, air permeability, measured carbonation velocity coefficient, chloride ion diffusion coefficient, absorption coefficient, air permeability coefficient. Corrosion velocity under environment of complex deterioration. And than compared corrosion velocity with these coefficients. As the results of this study, the correlation coefficient between chloride ion diffusion coefficients and absorption coefficient was revealed that it is very high. As well, an increase in carbonation, chloride ion diffusion also increases corrosion velocity. It showed that corrosion velocity was affected by the carbonation, chloride ion diffusion, absorption ratio, air permeability. Generally, data on the development of these coefficient made with none, organic B, organic A, inorganic B, and inorganic A is shown. It showed that coating of surface prevent steel bar from deteriorating.

  • PDF

Observation of Soot Behavior in Diffusion Flame according to Surrounding Air Velocity (분위기유속에 따른 확산화염내 매연거동파악)

  • Choi, Jae-Hyuk;Park, Won-Seok;Yoon, Seok-Hun;Oh, Cheol;Kim, Myoung-Hwan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.254-255
    • /
    • 2005
  • The effect of surrounding air velocity on the soot deposition process from a diffusion flame to a solid wall was investigated in a microgravity environment to attain in-situ observations of the process. An ethylene($C_2H_4$) diffusion flame was formed around a cylindrical rod burner in surrounding air velocity of $v_{air}$=2.5, 5, and 10 cm/s with oxygen concentration of 35 % and wall temperature of 300 K. Laser extinction was adopted to determine the soot volume fraction distribution between the flame and burner wall. The experimental results show that the soot particle distribution region moves closer to the surface of the wall with increasing surrounding air velocity. A numerical simulation was also performed to understand the motion of soot particles in the flame and the characteristics of the soot deposition to the wall. The results successfully predicted the differences in the motion of soot particles by different surrounding air velocity near the burner surface and are in good agreement with observed soot behavior in microgravity. A comparison of the calculations and experimental results led to the conclusion that a consideration of the thermophoretic effect is essential to understand the soot deposition on walls.

  • PDF

Effect of Chemical Interaction on Flame Extinction in Interacting H2-air and CO-air Premixed Flames (H2-공기와 CO-공기의 예혼합화염의 화염소화에 있어서 화학적 상호작용의 효과)

  • Jung, Seongwook;Park, Jeong;Kwon, Ohboong;Keel, Sangin;Yun, Jinhan
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.44-52
    • /
    • 2013
  • Important role of chemical interaction in flame extinction was numerically investigated in downstream interaction among lean(rich) and lean(rich) premixed as well as partially premixed $H_2$-air and CO-air flames. The strain rate varied from 30 to $5917s^{-1}$ until interacting flame could not be sustained anymore. Flame stability diagrams mapping lower and upper limit fuel concentrations for flame extinction as a function of strain rate are presented. Highly stretched interacting flames were survived only within two islands in the flame stability map where partially premixed mixture consisted of rich $H_2$-air flame, extremely lean CO-air flame, and a diffusion flame. Further increase in strain rate finally converges to two points. Appreciable amount of hydrogen in the side of lean $H_2$-air flame also oxidized the CO penetrated from CO-air flame, and this reduced flame speed of the $H_2$-air flame, leading to flame extinction. At extremely high strain rates, interacting flames were survived only by a partially premixed flame such that it consisted of a very rich $H_2$-air flame, an extremely lean CO-air flame, and a diffusion flame. In such a situation, both the weaker $H_2$-air and CO-air flames were parasite on the stronger diffusion flame such that it could lead to flame extinction in the situation of weakening the stronger diffusion flame. Particular concerns are focused on important role of chemical interaction in flame extinction was also discussed in detail.

Analysis of High Concentration Diffusion Pattern by Air Pollutions in Port Industry Interfaces

  • Je-Ho Hwang;Sang-Hyung Park;So-Hyun Yun;Si-Hyun Kim
    • Journal of Korea Trade
    • /
    • v.26 no.3
    • /
    • pp.117-136
    • /
    • 2022
  • Purpose - Port is vital for international trade accounting for approximately 80% of world cargo transportation in the global trade sector. Air pollutants emitted owing to the related industry interfaces developed around the port spread throughout the dense population region can have harmful effects on the nearby residents. This study aims to analyze high-concentration diffusion pattern by air pollutants, considering the main management periods by air pollutants. Design/methodology - Employing the concentration criteria per main air pollutant, the analyses of concentration change patterns per air pollutant, wind characteristics that directly affected the air pollutant diffusion, distribution types per air pollutant, and high-concentration diffusion patterns by season according to time changes were conducted. Findings - The substances that caused harmful levels of air pollution in the hinterland living zone of the Busan New Port were PM_10, PM_2.5, and NO_2. Furthermore, the intensive management periods were as follows: For PM_10, 24-h (spring), 12:00-16:00 (summer), 12:00-16:00 (summer), 20:00-12:00 (fall), and 24:00-20:00 (winter), and for PM_2.5, 24-h (all four seasons), and for NO_2, 23:00-04:00 (spring), 23:00-08:00 (summer), and 20:00-08:00 (fall), and 23:00-04:00 (winter). Originality/value - Research finding indicates that regular monitoring and countermeasures to reduce air pollution for each air pollutant makes it possible to achieve effective air quality control in the port and hinterland living zones.