• Title/Summary/Keyword: Air diffuser

Search Result 184, Processing Time 0.027 seconds

Concept Design on Heating System for Supersonic Air-Breathing Engine Test Facility (초음속 유도무기 지상 시험용 가열기 개념 설계)

  • Han Poong-Gyoo;NamKoung Hyuck-Joon;Lee Kyoung-Hoon;Kim Young-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.321-326
    • /
    • 2006
  • Vitiated air heater which could supply air of 700K and 6 bar was designed conceptually for the firing test on the ground of the air breathing propulsion engines. This vitiated air heater consists of premixer with air and excessive gas oxygen, mixing head, combustor with gas passage, convergent-divergent nozzle and diffuser. the fuel was natural gas and/or liquefied natural gas. Through computational fluid dynamics, each component of the air heater was analyzed and flame-holding after ignition was investigated.

  • PDF

Effect of Design Factors on the Performance of Stratified Thermal Storage Tank (성층축열조의 성능에 대한 설계인자의 영향)

  • Chung Jae Dong;Park Joohyuk;Cho Sung-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1077-1083
    • /
    • 2004
  • This study is to systematically analyze the effect of various kinds of design factors on the performance of stratified thermal storage tank. Taguchi method, known as a very reasonable tool in the parametric study, is employed in the present work. Three dimensional unsteady numerical experiment is conducted for 4 design parameters of stratified thermal storage tank: inlet Reynolds number, Froude number, diffuser size d with 3 levels (Re=400, 800, 1200, Fr=0.5, 1.0, 2.0 and d=150 mm, 200mm, 300 mm) and diffuser shape with 2 levels. Orthogonal array $L_{18}(2{\times}3^7)$ is adopted for the analysis of variance. The result gives quantitative estimation of the various design parameters affecting the performance and helps to select the main factors for the optimum design of stratified thermal storage tank. Reynolds number is found to be the most dominant parameter and the diffuser shape plays significant role on the performance of stratified thermal storage tank. Based on this finding, the prior questions on the contribution of the diffuser shape proposed by the authors become clear. The optimum condition for the performance is a set of d=300mm, Re=800, and radial regulated plate diffuser. Conformation test shows the repeatability in the analysis and $1.3\%$ difference between the estimated thermocline thickness and that of numerical result.

CFD Analysis on the Flow Characteristics of Diffuser/Nozzles for Micro-pumps (마이크로 펌프용 디퓨져/노즐의 유동 특성에 관한 CFD 해석)

  • Kim Donghwan;Han Dong-Seok;Jeong Siyoung;Hur Nahmkeon;Yoon Seok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.544-551
    • /
    • 2005
  • The flow characteristics have been numerically investigated for various shapes of the diffuser/nozzles which are used for a valveless micro-pump. The important parameters considered in this study are the throat width ($15\~120\mu$m), the taper angle ($3.15\~25.2^{\circ}$), and the diffuser length ( $600\~4,800\mu$m), and the size of the middle chamber ($1\~16mm^2$). To find the optimal values for these parameters, steady state calculations have been performed assuming the constant pressure difference between the inlet and exit of the flow For the taper angle and the throat width, it is found that there exists an optimum at which the net flow rate is the greatest. The optimal taper angle is in the range of $10\~20^{\circ}$ for all the pressure differences; and the throat width indicates an optimal value near $75\mu$m for the case of 35 kPa pressure difference. The net flow rate is also influenced by the size of the middle chamber. With decreasing chamber size, the net flow rate is reduced because of the interference between two streams flowing into the middle chamber. The unsteady pulsating flow characteristics for a micro-pump with a given diffuser/nozzle shape have been also investigated to show the validity of the steady state parametric study.

Fabrication of a Thermopneumatic Valveless Micropump with Multi-Stacked PDMS Layers

  • Jeong, Ok-Chan;Jeong, Dae-Jung;Yang, Sang-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.137-141
    • /
    • 2004
  • In this paper, a thermopneumatic PMDS (polydimethlysiloxane) micropump with nozzle/diffuser elements is presented. The micropump is composed of nozzle/diffuser elements as dynamic valves, an actuator consisting of a circular PDMS diaphragm and a Cr/Au heater on a glass substrate. Four PDMS layers are used for fabrication of an actuator chamber, actuator diaphragm by a spin coating process, spacer layer, and nozzle/diffuser by the SU-8 molding process. The radius and thickness of the actuator diaphragm is 2 mm and 30 ${\mu}{\textrm}{m}$, respectively. The length and the conical angle of the nozzle/diffuser elements are 3.5 mm and 20$^{\circ}$, respectively. The actuator diaphragm is driven by the air cavity pressure variation caused by ohmic heating and natural cooling. The flow rate of the micropump in the frequency domain is measured for various duty cycles of the square wave input voltage. When the square wave input voltage of 5 V DC is applied to the heater, the maximum flow rate of the micropump is 44.6 ${mu}ell$/min at 100 Hz with a duty ratio of 80% under the zero pressure difference.

The Secondary Chamber Pressure Characteristics of Sonic/Supersonic Ejector-Diffuser System (음속/초음속 이젝터 시스템의 2차정체실 압력특성)

  • Jung, S.J.;Lee, J.H.;Lee, K.H.;Choi, B.G.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.646-651
    • /
    • 2001
  • The present study is an experimental work of the sonic/supersonic air ejector-diffuser system. The pressure-time dependence in the secondary chamber of this ejector system is measured to investigate the steady operation of the ejector system. Six different primary nozzles of two sonic nozzles, two supersonic nozzles, petal nozzle, and lobed nozzle are employed to drive the ejector system at the conditions of different operating pressure ratios. Static pressures on the ejector-diffuser walls are to analyze the complicated flows occurring inside the system. The volume of the secondary chamber is changed to investigate the effect on the steady operation. the results obtained show that the volume of the secondary chamber does not affect the steady operation of the ejector-diffuser system but the time-dependent pressure in the secondary chamber is a strong function of the volume of the secondary chamber.

  • PDF

A study on mold design for microscopic bubble-producing air diffusers and on mold manufacture (미세기포 발생 산기장치 금형의 설계와 제작에 관한 연구)

  • Lee, Eun-jong;Choi, Kye-kwang;Kim, Sei-hwan
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.50-54
    • /
    • 2013
  • Sewage treatment plants are energy hogs. Among many, aeration systems account for 40-50 percent of the total energy use. To save energy, strengthening oxygen transfer characteristics is necessary. In order to do so, microscopic bubble-creating equipment is a prerequisite. This study focuses on microscopic bubble-producing air diffuser manufacture to save energy and enhance oxygen transfer.

  • PDF

Transient Flow Characteristics of the Room Air Conditioner (룸에어컨 내부 유동의 과도현상에 대한 수치적 연구)

  • Seo, Hyeon-Seok;Kim, Jin-Baek;Kim, Youn-Jea
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.526-529
    • /
    • 2008
  • Air Conditioner has become a popular comfort providing device since two decades, whether in an office or home especially for warm and wet climate countries. The RAC (Room Air Conditioner) is widely used in various working spaces and residences. It composed of heat exchager, cross-flow fan, stabilizer, rearguider and blade of diffuser region, etc. In this study, numerical analyses based on the prediction of transient phenomena were carried out to investigate the flow characteristics in the RAC, including the impeller, the rearguider, the stabilizer and the blade of the diffuser region. Using a commercial code, FLUENT, the velocity, pressure and streamlines were obtained with unsteady, turbulent flow and no-slip condition. The angular velocities of impeller are located in the 900 rpm. Turbulent closure was achieved using a standard k-${\varepsilon}$ model. A moving reference frame (MRF) approach was adopted to simulate the flow field generated by impeller in the RAC. Results were graphically depicted with various geometrical configurations and operating conditions.

  • PDF

Flow Analysis according to the Installation of an Aero Part in a Sports Car (스포츠카의 에어로 파츠 설치에 따른 유동해석)

  • Choi, Kyekwang;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.36-42
    • /
    • 2020
  • In this study, flow analyses of a vehicle at driving were carried out after each installation of a tuning part, specifically the bonnet air ducts, the rear spoiler, and the rear diffuser. The study models were designed to comprise a total of eight cases in which each of the three parts were mounted individually or all together in vehicles. Assuming that the vehicle were driven with an average high speed of 100 km/h, the speed and pressure around the vehicle were obtained using CFD when driving. The rear diffuser that becomes the most effective among the three mounting parts has a major role in reducing air resistance.

Numerical Analysis on the Coupled Operation of Ventilation Window System and Central Cooling System (창호일체형 환기시스템 및 중앙냉방시스템 연계 운영에 대한 수치해석적 연구)

  • Park, Dong Yoon;Chang, Seongju
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.4
    • /
    • pp.385-395
    • /
    • 2015
  • This study evaluated indoor environmental characteristics in an office room equipped both with ventilation window system and central cooling system. Fresh air is supplied only by the central cooling system whereas indoor air is discharged outside through both ceiling diffuser and a ventilation window system. Numerical study is conducted by changing the volumetric flow rates of exhaust ports of each system. For estimating the performance of this coupled system, $CO_2$ concentration and Predicted Mean Vote (PMV) were calculated using Computational Fluid Dynamics (CFD) simulation. The more the ceiling diffuser exhausts indoor air, the more the $CO_2$ concentration decreases. However, when the ventilation window system exhausts more indoor air, thermal comfort level gets improved in the office room with cooling system. Therefore, when the ventilation window system is operated, the coupled operation with central cooling system should be considered for enhancing indoor air quality and thermal comfort, together.

Effects of Casing Shape on the Performance of a Small-sized Centrifugal Compressor

  • Kim, D.W.;Kim, H.S.;Kim, Youn-J.
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.3
    • /
    • pp.132-139
    • /
    • 2003
  • The effects of casing shapes on the performance and the interaction between an impeller and a casing in a small-sized centrifugal compressor are investigated. Especially, numerical analyses are conducted for the centrifugal compressor with both a circular casing and a volute one. The optimum design for each element (i.e., impeller, diffuser and casing) is important to develop an efficient and compact compressor using alternative refrigerant as working fluids. Typical rotating speed of the compressor is in the range of 40,000∼45,000 rpm. The impeller has backswept blades due to tip clearance and a vane diffuser has wedge type. In order to predict the flow pattern inside an entire impeller, vaneless diffuser and casing, calculations with multiple frames of reference method between the rotating and stationery parts of the domain are carried out. For computations of compressible turbulent flow fields, the continuity and time-averaged Navier-Stokes equations are employed. To evaluate the performance of two types of casings, the static pressure recovery and loss coefficients are obtained for various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load. The static pressure around the casing and pressure difference between the inlet and outlet of the compressor are measured for the circular casing.