• Title/Summary/Keyword: Air cooled aggregate

Search Result 10, Processing Time 0.022 seconds

Analysis of CO2 Emission and Economic of Rural Roads Concrete Pavement Using Air Cooled Slag Aggregate (괴재슬래그 골재를 적용한 농촌도로 포장 콘크리트의 CO2 배출량 및 경제성 분석)

  • Ahn, Byong Hwan;Kim, Hwang-Hee;Lee, Jae-Young;Cha, Sang-Sun;Lee, Goen Hee;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.25-34
    • /
    • 2022
  • Recently, as a study to air cooled slag, which is an industrial by-product, research is being proceed to use it as a material for concrete. In this study, the workability, air content, compressive strength, CO2 emission and economic feasibility of concrete were analyzed when air cooled slag, an industrial by-product, was applied as aggregate for rural road pavement concrete. As a result of the analysis, both the slump and air contents test results of concrete using the air cooled slag aggregate satisfied the target values, and the compressive strength was increased when the air cooled slag aggregate was used compared to when the natural aggregate was applied. On the other hand, the largest amount of CO2 emission by raw material was found in aggregate. The carbon emission of rural road pavement concrete using air cooled slag aggregate increased when the Korean LCI DB was applied compared to when natural and crushed aggregates were applied, and the emission decreased when the German LCI DB was applied. This results are due to differences in the viewpoints of industrial by-products. However, considering the recycling of waste from the environmental aspect, it is necessary to simultaneously review the CO2 emission and recycling aspects in the future. Also, the application of air cooled slag aggregate had the effect of improving the economic efficiency of rural road pavement concrete about 18.75%.

The Experimental study on the property of concrete which used Blast furnace slag aggregate (고로슬래그 골재를 사용한 콘크리트 특성에 대한 실험적 연구)

  • 박정우;김상미;김광기;임남기;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.489-494
    • /
    • 2001
  • Several studies have reported that Granulated Blast-Furnace Slag improved the properties of concrete. The Granulated Blast-Furnace Slag could be a good alternative in the shortage of aggregate situation. Slag shows the possibility of influential aggregate and effect of environment preservation. This study presents that the basic properties of fresh concrete using Air-cooled Blast-furnace slag aggregate and Water-cooled Blast-furnace slag aggregate. Testing Factors of this study are concrete slump, slump loss, bleeding, and air contents. The result of this study is below. 1) In case of proportion slag and grave is 50 to 50, the biggest slump value is measured. 2) In the concrete using of air-cooled Blast-furnace slag aggregate, the bleeding capacity is a little. In the concrete using of Water-cooled Blast-furnace slag aggregate, the bleeding capacity goes up to 50% increase. 3) As substitution rate of the granulated blast-furnace slag goes up, air content is increased.

  • PDF

Mechanical Properties and Resistance to Freezing and Thawing of Concrete Using Air-Cooled Ferronickel Slag Fine Aggregate (서냉 페로니켈 슬래그 잔골재를 이용한 콘크리트의 역학적 특성 및 동결 융해 저항성)

  • Lee, Hong-Gik;Bae, Su-Ho;Lee, Hyun-Jin;Choi, Yun-Wang;Cho, Bong-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.319-323
    • /
    • 2018
  • Ferronickel slag is a by-product from the ferronickel smelting process and it is divided into air-cooled ferronickel slag and water granulated ferronickel slag according to cooling system. The purpose of this experimental resesrch is to investigate the mechanical properties and resistance to freezing and thawing of concrete using air-cooled ferronickel slag(ACFNS) fine aggregate. For this purpose, the concrete specimens with water-cement ratio of 50% were made with ACFNS's replacement ratios of 0%, 20%, 30%, 40%, 50%, 70%, and 100% by volume of fine aggregate. It was observed from the test results that the compressive strength and static modulus of elasticity of ACFNS fine aggregate concrete were increased with increasing replacement ratio of ACFNS and the resistance to freezing and thawing of this was similar to reference concrete which had the relative dynamic modulus of elasticity of more than 90% during the freezing and thawing of 300 cycles.

Radiation Shielding Property of Concrete Using the Rapidly Cooled Steel Slag from Oxidizing Process in the Converter Furnace as Fine Aggregate

  • Kim, Jin-Man;Cho, Sung-Hyun;Kwak, Eun-Gu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.478-489
    • /
    • 2012
  • Each year, about four million tons of steel slag, a by-product produced during the manufacture of steel by refining pig iron in the converter furnace, is generated. It is difficult to recycle this steel slag as aggregate for concrete because the reaction with water and free-CaO in steel slag results in a volume expansion that leads to cracking. However, the steel slag used in this study is atomized using an air-jet method, which rapidly changes the melting substance at high temperature into a solid at a room temperature and prevents free-CaO from being generated in steel slag. This rapidly-cooled steel slag has a spherical shape and is even heavier than natural aggregate, making it suitable for the aggregate of radiation shielding concrete. This study deals with the radiation shielding property of concrete that uses the rapidly-cooled steel slag from the oxidizing process in the converter furnace as fine aggregate. It was shown that the radiation shielding performance of concrete mixed with rapidly-cooled steel slag is even more superior than that of ordinary concrete.

Development of Concrete and Evaluation of Properties of Combined Steel making Slag Aggregates for Offshore Structure Production(II) (해양구조물 제조를 위한 제강슬래그 골재 조합별 물성평가 및 콘크리트 개발(II))

  • Jung, Won-Kyong;Kim, Hyun-Seok;Park, Dong-Cheon;Cho, Bong-Suk
    • Resources Recycling
    • /
    • v.25 no.2
    • /
    • pp.60-68
    • /
    • 2016
  • In this study, earlier analyzed tetrapod, one of an original group of offshore constructions studied for manufacturability of the concrete using the properties of steel making slag aggregate. steel making slag aggregate assessment, RCS and Blast Furnace Slag : the 20 mm air-cooled slag and combinations by 50 %, aggregate properties on the most appropriate for the properties of recycled aggregate concrete optimal mix, and assessing it. Properties of concrete used to be derived are judged as to bury the studies show that the hollowing-out of the RCS, plastic sole use is in the workability of the aggregate, plastic in the 20 mm slag also assessed to be a slight disadvantage, but RCS by mixing air-cooled coarse and 50 percent to 20 percent 50 mm. Thus, steel making slag marine structures using recycled aggregate, in rapid chilled slag or air-cooled slag. The sole use of the aggregate them than to combine the aggregate of concrete. After they satisfy the quality standard quality shall be used will aggregate steel making slag who meet the criteria concrete manufacturing in general or par with the aggregate of concrete. Performance was assessed as to develop a more than that.

A Study on the Optimal Concrete Mix-proportion Selection of PHC-pile by Using of Air-cooled Blast Furnace Slag Coarse Aggregate (괴재 고로슬래그 굵은 골재 사용에 따른 PHC-Pile용 콘크리트 최적 배합 도출에 관한 연구)

  • Jeon, In Ki;Lee, Joo Hun;Park, Yong Kyu;Kim, Hyun Woo;Yoon, Ki Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.270-271
    • /
    • 2014
  • In this study, a replacement ratio of blast furnace slag coarse aggregate and a water binder ratio by an optimum combination of PHC file was investigated. As a results, the target strength 78.5MPa was altogether satisfied in a mix proportion 28-G100-SG0 and W/B ratio 26 %. The surface rupture was generated in 28-G0-SG100 combination after curing with the autoclave. According to the result of measuring the ingredient, the majority were the MgOH2 hydrate.

  • PDF

The Optimal Mixing Design of the PHC Piles Utilizing the Air Cooled Blast Furnace Slag as Coarse Aggregate (서냉 고로슬래그 굵은골재를 활용한 PHC 파일의 최적배합 및 물리적 특성)

  • Park, Yong-Kyu;Kim, Hyun-Woo;Kim, Seung-Il;Hur, Kab-Soo;Yoon, Ki-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.137-144
    • /
    • 2014
  • The PHC pile utilizing the air-cooled blast-furnace slag as coarse aggregate was studied. This research was progressed with the range from the indoor mixing design evaluation into the actual goods production. The physical properties of the PHC pile are determined to satisfy through the appropriate mixing design adjustments. However, it should eliminate the aggregates including CaO and MgO in SG when it utilize in an AC (autoclave) type manufacturing process. It satisfied the bending moment, shear strength, and compressive strength of KS F 4306 except the surface states of the pile.

Strength Characteristics of Concrete Containing Blast-Funrnace Slag as Coarse Aggregate (고로슬래그를 굵은골재로 이용한 콘크리트의 강도특성)

  • 한상호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.59-68
    • /
    • 2000
  • A series of experiments were performed to investigate the strength characteristics of concrete which contain air cooled blast-furnace slag as coarse aggregate. The slag is a by product of GISC. The experimental conditions are varied with three different W/C(45%, 50%, 55%) and the weight of water and S/a are constant. The strength properties of the concrete at 7days, 28days, 90days are examined. Also the same strength properties are examined for the normal concrete which contain river gravel and crushed stone respectively as coarse aggregate. As the comparison results of the strength properties, it was found that the compressive strength development of concrete containing blast-furnace slag is better than that of concrete using river gravel at early age, however this is adversely at long-term age, and the tensile and flexural strength of the concrete were not nearly affected by water-cement ratio.

Development of Concrete and Evaluation of Properties of Combined Steel making Slag Aggregates for Offshore Structure Production (I) (해양구조물 제조를 위한 제강슬래그 골재 조합별 물성평가 및 콘크리트 개발( I ))

  • Jung, Won-Kyong;Hwang, Yun-Seok;Park, Dong-Cheon;Cho, Bong-Suk
    • Resources Recycling
    • /
    • v.25 no.2
    • /
    • pp.49-59
    • /
    • 2016
  • Steel slag is being recycled into industrial by-products for civil generated inevitably in the seasonal course, road and cement raw materials. However, the field of recycling most of the bottom portion is concentrated in the areas that are required to take advantage of the situation in various fields taking advantage of the steel slag. But various studies to take advantage of the steel slag as aggregate for concrete made for limiting slag was a situation that most of the studies are incomplete research on the suitability of as aggregate for concrete practical relates to an expandable suppressed. In this study, the separation of the slag aggregate according to the production methods to assess the feasibility aggregate for concrete aggregates, including through Steel making slag, a total of seven kinds of steel slag aggregate. Studies show that ordinary concrete, steel slag aggregate for aggregate and on the equally to take advantage of grading, chloride content standards such as to what is lacking, although appropriate aggregate of concrete include the deployment of only in special sectors through the combination was assessed to have a very high.

Evaluation of the Asph81t Mixture Performance with Waste Materials

  • Lee, Kwan-Ho;Lovell, C
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.17-34
    • /
    • 1996
  • The objective of this paper is to evaluate the asphalt mixture performance with pyrolyzed carbon black(CBP) and air -cooled iron blast furnace slag. Marshall mix design was performed to determine the optimum binder content, The optimum binder content ranged from 6.3 percent to 7.75 percent. Dynamic creep testing was carried out using mixtures at the optimum binder content. Based on the test results, the use of pyrolyzed carbon black and slag in the asphalt pavement showed a positive result, such as the increase of Marshall stability, the decrease of the strain rate and the decrease in the mix stiffness rate at high temperature(5$0^{\circ}C$) and 137.9 kPa confinement. Within the limits of this research. it was concluded that pyrolyzed carbon black as an additive and slag as a coarse aggregate could be used to produce an asphalt paving mixture that has good stability, stiffness, and rutting resistance.

  • PDF