• Title/Summary/Keyword: Air content, Slump

Search Result 249, Processing Time 0.021 seconds

Evaluation of Mechanical Properties of Early-age Concrete Containing Electric Arc Furnace Oxidizing Slag (전기로 산화슬래그를 혼입한 초기재령 콘크리트의 역학적 특성 평가)

  • Kwon, Seung-Jun;Hwang, Sang-Hyeon;Lim, Hee-Seob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.93-100
    • /
    • 2019
  • In this study, the mechanical properties of early-age concrete were evaluated by mixing the electric arc furnace oxidizing slag fine aggregate with 30% and 50% replacement ratio. Slump test, air content test and unit volume weight test were performed for fresh concrete, and compressive strength test and chloride penetration experiments were carried out in hardened concrete. The compressive strength increased up to 7 days of curing age with increasing replacement ratio of the electric furnace oxidizing slag, but the strength decreased to 90% level of OPC concrete at 28 days of age. Regarding the result of chloride penetration test, no significant differences from OPC concrete were evaluated, which shows a feasibility of application to concrete aggregate.

Evaluation of Properties of Mortar and Concrete using Wood Chip Cogeneration Plant Flooring as Fine Aggregate (목재칩 열병합 발전소 바닥재를 잔골재로 활용한 모르타르 및 콘크리트 특성 평가)

  • Kang, Suk-Pyo;Hong, Seong-Uk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.327-334
    • /
    • 2022
  • In this study, in order to evaluate the characteristics of mortar and concrete using wood chip cogeneration plant flooring as fine aggregate, mortar characteristics according to wood chip aggregate replacement rate and water-cement ratio as a substitute for crushed sand, and concrete characteristics according to wood chip aggregate replacement rate were compared and evaluated. The cement mortar flow according to the wood chip aggregate replacement rate showed a tendency to increase as the wood chip aggregate replacement rate increased, and the compressive strength and flexural strength increased as the wood chip aggregate replacement rate increased. The slump and air content of concrete increased as the aggregate replacement rate increased, and the compressive strength and tensile splitting strength of concrete tended to increase as the wood chip aggregate replacement rate increased. Accordingly, the possibility of using the flooring by the cogeneration plant as a fine aggregate for concrete was confirmed.

Basic Characteristics of Slag Cement using CO2 Fixed Desulfurized Gypsum (CO2 고정 탈황석고를 사용한 슬래그 시멘트의 기초적 특성)

  • Chun-Jin Park;Jong-Ho Park;Sung-Kwan Seo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.25-31
    • /
    • 2023
  • In this study, the basic properties of CO2 immobilized desulfurized gypsum (CFBG) and the possibility of being used as a stimulus for slag cement were reviewed, and performance evaluation was conducted through a concrete mixing test. The main components of CFBG were CaO and SO3, and CaO and SO3 increased as the drying temperature increased. The moisture content of undried CFBG was 15.7 %, the drying temperature was 1.7 % and the drying temperature was 0.03 % at 105 ℃. Mortar using CFBG tended to have a lower flow value as the drying temperature increased, and the compressive strength was equivalent to that of the FGB use mixture. As a result of the concrete experiment using CFBG SC, both slump and air volume satisfied the target range after 60 minutes, and the compressive strength tended to increase overall compared to the ternary binder mixture.

Fundamental Study on High Strength and High Durability Cement Concrete Pavement : Part I Optimum Mix Proportions (시멘트콘크리트 포장의 고강도 고내구성을 위한 기초 연구 : Part I 최적배합에 관한 연구)

  • Yun, Kyong-Ku;Park, Cheol-Woo
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.41-49
    • /
    • 2009
  • Cement concrete pavement has become more common in Korean highway systems. However, as its service period increases, there are some technical problems occurs and no clear solution is available primarily due to the lack of active researches. This research, hence, aims to develop a new mix proportion that may provide better strength and durability with extended service life. Based on a variety of literature reviews, the experimental variables were determined as unit cement content, S/a ratio and W/C ratio. From the experimental works, it is recommended to increase the unit cement content up to 375kg/$m^3$, 400kg/$m^3$ and 425kg/$m^3$. The target slump and air content were set 40mm and 5%, respectively. The maximum size of coarse aggregate was decided to be 25mm because of the easiness of supply in the field. The reduction of W/C ratio was necessarily required and decreased to 0.4 which was proven not to cause any mixing problem with the increased unit cement contents along with polycarbon-based high range water reducing agent. In addition, it was known that the S/a ratio could be reduced to 0.34. The lowered S/a might be possible because of the increased cement paste and hence increased cohesiveness and workability.

  • PDF

Properties of Hot Weather Nuclear Power Plant Concrete with Water Cooling Method and Retarding used (배합수 냉각방법 및 지연제 사용에 따른 서중 원전콘크리트의 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Jang, Seok-Soo;Yeo, In-Dong;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4602-4609
    • /
    • 2013
  • In summer and winter, the difference between the temperature during the day and that during the night is high, which leads to various problems during concrete placement, such as cracks and defects in the concrete as well as low durability and strength. Although nuclear power plant concrete is widely used for placement in all seasons, particular attention must be paid to its quality during the summer. Therefore, we evaluated the effects of a cooling method for mixing water, which is a commonly used hot weather precooling method, and the use of a retarder, on the characteristics of Nuclear Power Plant concrete. In the cooling method for mixing water, cold water at 5 was used, with 50% of the water content consisting of ice flakes. The effects of using a retarder were evaluated by reviewing the characteristics of the cement at the unset stage and after hardening. To evaluate the characteristics of the unset cement, we measured the slump, air volumes, setting times, and pressure strengths after hardening. Furthermore, we measured the heat of hydration at different temperatures; the loss of heat was minimized using insulation. Both the slump time and the complete ageing time of the air volume were found to be 120 min at $20^{\circ}C$ and 40 min at $40^{\circ}C$. In the case when the cooling method for mixing water was used and in the case when a retarder was used, the initial and final sets by penetration resistance were delayed, and the delay decreased with increasing air temperature. For the heat of hydration, the cooling method for mixing water not only lowered the maximum temperature but also delayed its attainment. However, the use of a retarder had no effect on the maximum temperature. Moreover, in the early ages (e.g., 3 and 7 days), the pressure strength of the concrete was lower than that of plain cement. However, the strength of 28-day concrete met the standard construction specifications.

Evaluation for Applicability of Reinforced Concrete Structure with Domestic Pond Ash (국산 매립회 골재를 사용한 콘크리트 구조물의 적용성 평가)

  • Lee, Bong-Chun;Jung, Sang-Hwa;Chae, Sung-Tae;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.541-550
    • /
    • 2011
  • Many researches have been performed on concrete with fly ash and bottom ash. However researches on concrete with pond ash (PA) and its application to RC (Reinforced Concrete) structure are limitedly carried out. This paper presents an applicability of PA concrete in construction of real size structure. Referring to the previous study, 2 domestic PA samples with normal performance are selected and 2 replacement ratios (25% and 50%) to fine aggregate are considered for 5 PA concrete structures consisting of column, slab, and wall. In order to evaluate the property of fresh concrete, several tests including air content, slump, and setting time are performed. Using cored out samples from hardened PA concrete structure, tests for strength, resistance to carbonation and chloride penetration are carried out and compared with control samples. Additionally, tests for rebound hardness, drying shrinkage, and hydration heat are performed for PA concrete structure. The test results showed that PA concrete has reasonable strength and durability performances compared to those of normal concrete. Therefore, its potential application to RC structure is promising. The PA aggregate can be more actively used for RC structures with better quality control for content of fly ash, bottom ash, and unburned carbon.

Field Application on Mass Concrete of Combined Coarse Particle Cement and Fly-Ash in Mat Foundation (조분(粗粉) 시멘트와 플라이애시를 복합 치환한 매트 기초 매스콘크리트의 현장적용)

  • Han, Cheon-Goo;Jang, Duk-Bae;Lee, Chung-Sub
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.11-20
    • /
    • 2010
  • This study carried out a Mock-up test to apply Low-heat Cement (CF) that is adjusted to a fineness of $3,000\;{\pm}\;200\;cm^2/g$ by substituting Coarse particle Cement (CC) and fly ash with ordinary Portland Cement (OPC), then applied it on-site. The result of the test is as follows. The Mock-up test showed that the amount of admixture in CF increased SP agent and AE agent slightly more compared to OPC, while temperature history showed that the highest temperature of CF was around $6{\sim}10^{\circ}C$ lower than that of OPC. Compressive strength in CF was low compared to that of OPC, but the strength width became narrow at the age of 28 days, which is not considered to be significant. In on-site application, slump, air content and chloride content all satisfied the target values, while the temperature history showed that the highest temperature in the center by each cast was about $34^{\circ}C$ in the first cast, $42^{\circ}C$ in the second cast, and $39^{\circ}C$ in the third cast. Compressive strength of specimen for strut management showed low value compared to standard curing, but its strength was reduced at the age of 28 days.

The Quality of Crushed Sand by Dry Production Process and Its Influence on Properties of Concrete (건식공정으로 생산한 부순 모래의 품질 및 콘크리트 특성에 미치는 영향)

  • Park, Cho-Bum;Baek, Chul-Woo;Kim, Ho-Su;Ryu, Deuk-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.415-423
    • /
    • 2006
  • As the shortage of natural & good quality aggregate for concrete, it is needed development of alternative aggregate. At the present time, the crushed sand is widely used among the alternation aggregate, and the usage of crushed sand will be increased more and more. Generally, crushed sud is produced with wet process in domestic, but some manufacturing companies which are handicapped with local restrict are produced by dry process. In this study, analyzing the facilities of dry crushed sand, the quality properties of dry crushed sand was done by Korean Industrial Standards. Based on the quality results of dry crushed sand, the experiment of concrete with the dry crushed sand which is substitute for sea sand was done. As the results of basic qualities, the amount of 0.08 mm sieve passing ratio was over KS criteria, and the fineness modulus was higher than sea sand, and the other physical properties of dry crushed sand was similar to sea sand. The results of concrete experiment, according to the substitutive ratio of dry crushed sand is increased, the slump and air content of concrete was decreased by increase of fine particles of dry crushed sand, and the unit weight content, compressive & tensile strength of concrete were increased on the contrary. The physical properties of concrete used dry crushed sand were showed same tendency without relation to W/B. Consequently, if the fine particle contents of dry crushed sand was lower, it is judged that dry crushed sand is no problem to use for concrete aggregate and the amount of usage will be increased.

Evaluation for Properties of Domestic Pond Ash Aggregate and Durability Performance in Pond Ash Concrete (국산 매립회의 골재특성 평가 및 매립회 콘크리트의 내구 성능 평가)

  • Lee, Bong-Chun;Jung, Sang-Hwa;Kim, Joo-Hyung;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.311-320
    • /
    • 2011
  • Fly ash (FA), byproduct from power plant has been actively used as mineral admixture for concrete. However, since bottom ash (BA) is usually used for land reclaim or subbase material, more active reuse plan is needed. Pond ash (PA) obtained from reclaimed land is mixed with both FA and BA. In this study, 6 PA from different domestic power plant are prepared and 5 different replacement ratios (10%, 20%, 30%, 50%, and 70%) for fine aggregate substitutes are considered to evaluate engineering properties of PA as fine aggregate and durability performance of PA concrete. Tests for fine aggregate of PA for fineness modulus, density and absorption, soundness, chloride and toxicity content, and alkali aggregate reaction are performed. For PA concrete, durability tests for compressive strength, drying shrinkage, chloride penetration/diffusion, accelerated carbonation, and freezing/thawing are performed. Also, basic tests for fresh concrete like slump and air content are performed. Although PA has lower density and higher absorption, its potential as a replacement material for fine aggregate is promising. PA concrete shows a reasonable durability performance with higher strength with higher replacement ratio. Finally, best PA among 6 samples is selected through quantitative classification, and limitation of PA concrete application is understood based on the test results. Various tests for engineering properties of PA and PA concrete are discussed in this paper to evaluate its application to concrete structure.

Effect of Powder Hardening Accelerator on the Physical Properties of Precast Concrete (분말형 경화촉진제를 혼입한 PC부재용 콘크리트의 기초특성에 관한 실험적 연구)

  • Jun, Woo-Chul;Seo, Hwi-Wan;Bae, Yeoun-Ki;Park, Hee-Gon;Min, Tae-Beom;Kwon, Yeong-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.265-271
    • /
    • 2015
  • This study is intended to produce a PC (Precast Concrete) member without a steam curing process in developing the high early strength concrete satisfying the condition of 10MPa in compressive strength at the age of 6 hours, and is intended to ensure economic feasibility by increasing the turnover rate of concrete form. Hence, high early strength cement with high $C_3S$ content and the hardening accelerator of powder type accelerating the hydration of $C_3S$ was used. And the properties of concrete were evaluated according to the hardening accelerator mixing ratio (0, 1.2, 1.6, 2.0). No big difference was found from the tests of both slump and air content. When 1.6 % or higher amounts of the hardening accelerator were mixed, the compressive strength of 10MPa was achieved at the age of 6 hours. From the test results of autogenous (drying) shrinkage and plastic shrinkage, it can be seen that there was a difference according to hydration reaction rate due to the addition of the hardening accelerator. However, it was shown that no problem arose with crack and durability. And it was shown that resistance to freezing-thawing, carbonation, and penetration were excellent.