• Title/Summary/Keyword: Air clean system

Search Result 289, Processing Time 0.026 seconds

Performance Analysis of Shell Coal Gasification Combined Cycle systems (Shell 석탄가스화 복합발전 시스템의 성능해석 연구)

  • Kim, Jong-Jin;Park, Moung-Ho;Song, Kyu-So;Cho, Sang-Ki;Seo, Seok-Bin;Kim, Chong-Young
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.104-113
    • /
    • 1997
  • This study aims to develop an analysis model using a commercial process simulator-ASPEN PLUS for an IGCC (Integrated Gasification Combined Cycle) system consisting a dry coal feeding, oxygen-blown entrained gasification process by Shell, a low temperature gas clean up process, a General Electric MS7001FA gas turbine, a three pressure, natural recirculation heat recovery steam generator, a regenerative, condensing steam turbine and a cryogenic air separation unit. The comparison between those results of this study and reference one done by other engineer at design conditions shows consistency which means the soundness of this model. The greater moisture contents in Illinois#6 coal causes decreasing gasifier temperature and the greater ash and sulfur content hurt system efficiency due to increased heat loss. As the results of sensitivity analysis using developed model for the parameters of gasifier operating pressure, steam/coal ratio and oxygen/coal ratio, the gasifier temperature increases while combustible gases (CO+H2) decreases throughout the pressure going up. In the steam/coal ratio analysis, when the feeding steam increases the maximum combustible gas generation point moves to lower oxygen/coal ratio feeding condition. Finally, for the oxygen/coal ratio analysis, it shows oxygen/coal ratio 0.77 as a optimum operating condition at steam/coal feeding ratio 0.2.

  • PDF

A Study on The Introduction of LID Prior Consultation for Small-Scale Development Projects - Focusing on Cost-Benefit Analysis - (소규모 개발사업의 저영향개발(LID) 사전협의 제도 도입 연구 - 비용편익 분석을 중심으로 -)

  • Ji, Min-Kyu;Sagong, Hee;Joo, Yong-Jun
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.151-157
    • /
    • 2020
  • Rapid urbanization has elevated the risk of urban flooding due to the increase in the impervious surface, causing environmental disasters and environmental pollution problems, such as lowering the groundwater level and increasing water pollution. In Korea, low impact development (LID) techniques have been introduced to minimize these environmental impacts and maintain the water cycle soundness. However, most small-scale development projects are in blind spots because there is no legal basis for rainfall runoff management. Small-scale development projects that increase the surface runoff of rainwater are required to mandate the application of LID facilities in accordance with the polluters' responsibility principle. Therefore, it is necessary to implement a preliminary consultation system for water cycle recovery. This study focuses on the cost-benefit analysis on the application of LID techniques for small-scale development projects. The scale of nationwide small-scale development projects used for cost-benefit analysis were defined as buildings with a land area of more than 1,000 ㎡ or a total floor area of 1,500 ㎡. As a result of analyzing the cost-benefits from the installation of LID facilities, they were found to be much lower than the economic standard value of 1. This might be due to the high cost of facilities compared to the scale of the project. However, considering the overall environmental value of improving the water environment and air quality by the installation of LID facilities and the publicity of reducing the operating cost of sewage treatment facilities, the introduction of a prior consultation for small-scale development projects is inevitable. In the future, institutional and financial support from local governments is required to improve the cost-benefits with the introduction of a prior consultation for small-scale development projects.

Review on Risks of Perchlorate and Treatment Technologies (퍼클로레이트(Perchlorate)의 위해성과 저감기술 소개)

  • Shin, Kyung-Hee;Son, Ah-Jeong;Cha, Daniel K.;Kim, Kyoung-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1060-1068
    • /
    • 2007
  • Perchlorate contamination in aquatic system is a growing concern due to the human health and ecological risks associated with perchlorate exposure. In spite of potential risks associated with perchlorate, drinking water standard has not been established worldwide. Recently, US EPA has issued new protective guidance for cleaning up perchlorate contamination with a preliminary clean-up goal of 24.5 ppb. In Korea, the drinking water standard and discharge standard for perchlorate has not been established yet and little information is available to address perchlorate problems. Perchlorate treatment technologies include ion exchange, microbial reactor, carbon adsorption, composting, in situ bioremediation, permeable reactive barrier, phytoremediation, and membrane technology. The process description, capability, and advantage/disadvantages of each technology were described in detail in this review. One of recent trends in perchlorate treatment is the combination of available treatment options such as combined microbial reduction and permeable reactive burier. In this review, we provided a brief perspective on perchlorate treatment technology and to identify an efficient and cost-effective approach to manage perchlorate problem.

Separation of Sulfur Dioxide by Circulatory Porous Polymer Membrane Contactor (순환식 고분자 분리막 접촉기를 이용한 이산화황 분리)

  • Lee, Yong-Taek;Jeon, Hyun-Soo;Ahn, Hyo-Seong;Song, In-Ho;Jeong, Heon-Kyu;Lee, Hyung-Keun
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.302-310
    • /
    • 2007
  • The effects of various system parameter on the absorption of sulfur dioxide into the absorbent liquid were investigated in a circulatory porous polymer membrane contactor. A feed gas and an absorbent used in the study were the gas mixture of air and $SO_2$ and the $Na_2SO_3$ aqueous solution, respectively. The separation of sulfur dioxide was measured in terms of the concentration of $Na_2SO_3$ absorbent, the concentration of sulfur dioxide, the feed flow rate, the absorbent velocity and the different membrane material. As the concentration of absorbent increased from 0.05 to 0.2 M, the removal efficiency increased from 74 to 100%. By increasing the concentration of sulfur dioxide from 700 to 2,500 ppm, the removal efficiency decreased from 100 to 75%. Also as the absorbent velocity increased from 2.5 to 15 mL/min, the removal efficiency increased from 85 to 100%. As the porosity of the membrane increased, the removal efficiency increased.

A Study on the Optimal Location Selection for Hydrogen Refueling Stations on a Highway using Machine Learning (머신러닝 기반 고속도로 내 수소충전소 최적입지 선정 연구)

  • Jo, Jae-Hyeok;Kim, Sungsu
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.83-106
    • /
    • 2021
  • Interests in clean fuels have been soaring because of environmental problems such as air pollution and global warming. Unlike fossil fuels, hydrogen obtains public attention as a eco-friendly energy source because it releases only water when burned. Various policy efforts have been made to establish a hydrogen based transportation network. The station that supplies hydrogen to hydrogen-powered trucks is essential for building the hydrogen based logistics system. Thus, determining the optimal location of refueling stations is an important topic in the network. Although previous studies have mostly applied optimization based methodologies, this paper adopts machine learning to review spatial attributes of candidate locations in selecting the optimal position of the refueling stations. Machine learning shows outstanding performance in various fields. However, it has not yet applied to an optimal location selection problem of hydrogen refueling stations. Therefore, several machine learning models are applied and compared in performance by setting variables relevant to the location of highway rest areas and random points on a highway. The results show that Random Forest model is superior in terms of F1-score. We believe that this work can be a starting point to utilize machine learning based methods as the preliminary review for the optimal sites of the stations before the optimization applies.

Simultaneous Removal of NO and SO2 using Microbubble and Reducing Agent (마이크로버블과 환원제를 이용한 습식 NO 및 SO2의 동시제거)

  • Song, Dong Hun;Kang, Jo Hong;Park, Hyun Sic;Song, Hojun;Chung, Yongchul G.
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.341-349
    • /
    • 2021
  • In combustion facilities, the nitrogen and sulfur in fossil fuels react with oxygen to generate air pollutants such as nitrogen oxides (NOX) and sulfur oxides (SOX), which are harmful to the human body and cause environmental pollution. There are regulations worldwide to reduce NOX and SOX, and various technologies are being applied to meet these regulations. There are commercialized methods to reduce NOX and SOX emissions such as selective catalytic reduction (SCR), selective non-catalytic reduction (SNCR) and wet flue gas desulfurization (WFGD), but due to the disadvantages of these methods, many studies have been conducted to simultaneously remove NOX and SOX. However, even in the NOX and SOX simultaneous removal methods, there are problems with wastewater generation due to oxidants and absorbents, costs incurred due to the use of catalysts and electrolysis to activate specific oxidants, and the harmfulness of gas oxidants themselves. Therefore, in this research, microbubbles generated in a high-pressure disperser and reducing agents were used to reduce costs and facilitate wastewater treatment in order to compensate for the shortcomings of the NOX, SOX simultaneous treatment method. It was confirmed through image processing and ESR (electron spin resonance) analysis that the disperser generates real microbubbles. NOX and SOX removal tests according to temperature were also conducted using only microbubbles. In addition, the removal efficiencies of NOX and SOX are about 75% and 99% using a reducing agent and microbubbles to reduce wastewater. When a small amount of oxidizing agent was added to this microbubble system, both NOX and SOX removal rates achieved 99% or more. Based on these findings, it is expected that this suggested method will contribute to solving the cost and environmental problems associated with the wet oxidation removal method.

Characteristics on De-CH4/NOx according to Ceramic and Metal Substrates of SCR Catalysts for CNG Buses (CNG 버스용 SCR 촉매의 세라믹과 메탈 담체에 따른 De-CH4/NOx 특성)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.18-24
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for about 95% of the automobiles in use. Also, in order to meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is gradually increasing. Natural gas is a clean fuel that emits few air pollutants and has been used mainly as a fuel for city buses. In the long term, we intend to develop a new NGOC/LNT+NGCO/SCR combined system that simultaneously reduces the toxic gases, $CH_4$ and NOx, emitted from CNG buses. The objective of this study is to investigate the characteristics of $de-CH_4/NOx$ according to the ceramic and metal substrates of the SCR (Selective Catalytic Reduction) catalysts mounted downstream of the combined system. The V and Cu-SCR catalysts did not affect the $CH_4$ oxidation reaction, the two NGOC/SCR catalysts each coated with two layers began to oxidize $CH_4$ at $400^{\circ}C$, and the amount of $CH_4$ emitted was reduced to about 20% of its initial value at about $550^{\circ}C$. The two NGOC/SCR catalysts each coated with two layers showed a negative (-) NOx conversion rate above $350^{\circ}C$. The ceramic-based combined system reached LOT50 at $500^{\circ}C$, which was about 20% higher in terms of the $CH_4$ conversion rate than the metal-based combined system, showing that the combined system of NGOC/LNT+Cu-SCR is a suitable combination.

A Numerical Study on the Characteristics of Flows and Fine Particulate Matter (PM2.5) Distributions in an Urban Area Using a Multi-scale Model: Part II - Effects of Road Emission (다중규모 모델을 이용한 도시 지역 흐름과 초미세먼지(PM2.5) 분포 특성 연구: Part II - 도로 배출 영향)

  • Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1653-1667
    • /
    • 2020
  • In this study, we coupled a computation fluid dynamics (CFD) model to the local data assimilation and prediction system (LDAPS), a current operational numerical weather prediction model of the Korea Meteorological Administration. We investigated the characteristics of fine particulate matter (PM2.5) distributions in a building-congested district. To analyze the effects of road emission on the PM2.5 concentrations, we calculated road emissions based on the monthly, daily, and hourly emission factors and the total amount of PM2.5 emissions established from the Clean Air Policy Support System (CAPSS) of the Ministry of Environment. We validated the simulated PM2.5 concentrations against those measured at the PKNU-AQ Sensor stations. In the cases of no road emission, the LDAPS-CFD model underestimated the PM2.5 concentrations measured at the PKNU-AQ Sensor stations. The LDAPS-CFD model improved the PM2.5 concentration predictions by considering road emission. At 07 and 19 LST on 22 June 2020, the southerly wind was dominant at the target area. The PM2.5 distribution at 07 LST were similar to that at 19 LST. The simulated PM2.5 concentrations were significantly affected by the road emissions at the roadside but not significantly at the building roof. In the road-emission case, the PM2.5 concentration was high at the north (wind speeds were weak) and west roads (a long street canyon). The PM2.5 concentration was low in the east road where the building density was relatively low.

Factors Related with Job Satisfaction in Workers - Through the Application of NIOSH Job Stress Model - (직장인의 직무만족도 관련요인 분석 - NIOSH의 직무스트레스 모형을 적용하여 -)

  • Kim, Soon-Lae;Lee, Bok-Im;Lee, Jong-Eun;Rhee, Kyung-Yong;Jung, Hye-Sun
    • Research in Community and Public Health Nursing
    • /
    • v.14 no.2
    • /
    • pp.190-199
    • /
    • 2003
  • This study was conducted to determine the factors affecting job satisfaction in workers by using the Job Stress Model proposed by the National Institute for Occupational Safety and Health (NIOSH). Data were collected from December 1 to December 30, 1999. The subjects were 2,133 workers employed at 155 work sites, who were examined using NIOSH Job Stress questionnaire translated by the Korea Occupational Safety ${\pounds}|$ Health Academy and Occupational Safety ${\pounds}|$ Health Research Institute. SAS/PC program was used for statistical analysis using descriptive analysis. Pearson's correlation coefficient, ANOVA, and Stepwise multiple regression analysis. The results of this study were as follows. 1. According to general characteristics of the subjects, job satisfaction was high in those with less number of children. 2. By work condition, job satisfaction was higher in those who were working in a permanent job position, were working with regular time basis than with shift basis, were working in regular shift hours than in changing shift hours, were working for a short period, and were working less hours and overtime works per week. 3. In terms of physical work environment, job satisfaction was significantly related to 10 physical environmental factors. In other words, job satisfaction was high in workers who were working in an environment with no noise, bright light, temperature adjusted to an appropriate level during summer and winter, humidity adjusted to an appropriate level. well ventilation, clean air, no exposure to hazardous substance during work hour, overall pleasant work environment and not crowded work space. 4. By work-related factors, job satisfaction was high in those with less ambiguity about future job and role, high job control/autonomy, and less workload. On the other hand, job satisfaction was low in those with little utilization of competencies, and much role conflict at work and workload. 5. As for the relationships between job satisfaction and the non-work related factors, job satisfaction was high in workers who were volunteering at different organizations or active in religious activities for 5-10 hours per week. 6. In the relationships between job satisfaction and buffering factors, significantly positive correlations were found between job satisfaction and factors such as support by direct superior, support by peers, and support by spouse, friend and family. 7. There were nine factors that affected job satisfaction in the workers: age, number of children, work hours per week, noise, temperature at the work site during summer, uncomfortable physical environment, role ambiguity, role conflict, ambiguity in job future, work load, no utilization of competencies and social support from direct supervisor. These nine factors accounted for 26% of the total variance in the multiple regression analysis. In conclusion. the following are proposed based on the results of this study. 1. The most important physical environmental factors affecting job satisfaction in workers were noise, role ambiguity, and work load, suggesting a need to develop strategies or programs to manage these factors at work sites. 2. A support system that could promote job satisfaction is needed by emphasizing the roles of occupational health nurses who may be stationed at work sites and manage the factors that could generate job stress. 3. Job satisfaction is one of the three acute responses to stress proposed in NIOSH job stress model (job satisfaction. physical discomfort and industrial accidents). Therefore, further studies need to be conducted on the other two issues.

  • PDF