• Title/Summary/Keyword: Air changes per hour

Search Result 16, Processing Time 0.026 seconds

An Experimental Study of Ventilation Effectiveness in Mechanical Ventilation systems using a Tracer Gas Method

  • Lee, Jae keun;Kang, Tae-Wook;Lee, Kam-Gyu;Cho, Min-Chul;Shin, Jin-Hyuk;Kim, Seong-Chan;Koo, Jeong-Hwan;Lee, Jong ho
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1286-1295
    • /
    • 2000
  • The ventilation effectiveness is evaluated as a function of air exchange rate and supply / extract locations in a simplified model chamber using a tracer gas technique of CO$_2$ gas injected into a supply duct. Ventilation systems consist of supply and extract fans, a CO$_2$gas generator, a CO$_2$gas analyzer and a test chamber. The ventilation effectiveness is evaluated using a step-down method based on ASTM Standard E741-83. The room mean age of the model chamber is decreased with increasing air exchange rate fanged from 6to 10 air changes per hour. The ventilation effectiveness of the mechanical inlet/natural extract system is better than that of the mechanical extract system.

  • PDF

Gas Leakage Condition and CFD analysis on Gas Fuelled ship FGS system (Gas Fuelled Ship FGS 시스템에 대한 가스누출 조건 검토 및 CFD 해석)

  • Kim, Ki-Pyoung;Kang, Ho-Keun;Park, Jae-Hong;Choung, Choung-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.7-10
    • /
    • 2011
  • According to the requirement of Res.MSC.285(86) for natural gas-fueled engine installations in ships, pump and compressor rooms should be fitted with effective mechanical ventilation system of the under pressure type, providing a ventilation capacity of at least 30 air changes per hour. It generally considered that gas leakage is more likely from a Fueled Gas Supply System(FGS) room as compared to other places, where installed in many kind of machinery or equipments like gas supply high-pressure pipes, valves, flanges and etc. Furthermore, leaked gas may be dispersed in a short time in an enclosed space, especially a FGS room, due to high pressure. However, the present requirement in Res.MSC.285(86) just considers the ventilating capacity of air changes per hour but the capacity of leaked gas. Hence, the current requirements may not meet effectively when enforcing the new propulsion systems as marine fuel. This study is conducted for the purpose of safety evaluation about the dispersion and ventilation efficiency with estimated leakage scenario. Numerical analysis predictions as the result of this paper are explained to know the features of flow pattern and the diffusion of natural gas concentration.

  • PDF

A CFD Simulation Study on the Isolation Performance of a Isolation Ward (CFD를 이용한 격리병동의 격리성능 검토)

  • Sohn, Deokyoung;Kwon, Soonjung;Choi, Yunho
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.20 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • Purpose: In this study, we performed ventilation simulations for a standard isolation ward including three intensive care rooms, one anteroom(buffer room), and its recommended ventilation equipments. The purpose of this study is to predict outflow of pathogenic bacteria from patient breath to verify the reliability and the safety of the isolation ward. Methods: We suppose three scenarios of the movement of medical staff. The leakage of patient's breath to out of the ward is predicted in these scenarios using CFD simulations. Results: The patient's breath leakage rate to out of the ward in scenario 1 according to room air changes per hour(ACH : 6 and 12) is predicted to be 0.000057% and 0.00002%, respectively. The patient's breath leakage rate to out of the ward in scenario 2 according to room air changes(ACH : 6 and 12) is predicted to be 0.00063% and 0.00019%, respectively. The patient's breath leakage rate to out of the ward in scenario 3, which is the worst case(6 room air changes) is predicted to be 0.1%. Implications: Through the ventilation simulation like that in this study, the reliability and the safety on isolation performance of various plan of isolation ward are predicted quantitatively.

A Case Study on the Ventilation System of the General hospital (종합병원의 환기설비 사례 연구)

  • Jung, Jong-Rim
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.187-194
    • /
    • 2004
  • In many other buildings, hospital is very important because of its function and purpose. A proper building service systems including heating, cooling, ventilation and plumbing systems is required in hospial. Besides, a special systems like medical gas, vacuum cleaning systems are required to prevent contamination as well as cure a patient in hospital. Ventilation is very important method to keep the indoor pressure and clean class. There are some specific rooms to consider clean class and indoor pressure in the general hospital. In this article, specific rooms were set to operating room, laboratory, ICU, isolation unit, and sterilizer room. In this case study, design factors of ventilation system, including air changes of OA and TA, indoor pressure, clean class, filter, and material of system, of specific rooms in hospital were proposed through a literature research and a design examples review.

Removal of Serratia marcescens Aerosols Using an Electrostatic Precipitator Air-Cleaner

  • Ko, Gwang-Pyo;Burge, Harriet
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1622-1628
    • /
    • 2007
  • We characterized the efficacy of an electrostatic precipitator (ESP) air-cleaner in reducing the concentration of Serratia marcescens in an enclosed space. We used an experimental room ($4.5{\times}3{\times}2.9\;m$) in which electrostatic air-cleaners were located. Two air-cleaners enhanced the equivalent ventilation rates in the chamber by about 3.3 air changes per hour (ACH) over the 2 ACH provided by the mechanical ventilation system. Natural die-off of the organisms provided an additional equivalent of 3 ACH, so that the total ventilation rate with the ESP air-ccleaners was 8.3 ACH. We also examined whether the ESP air-cleaners altered the deposition of Serratia marcescens aerosols on the experimental room surfaces. We did not find any significant differences in the number of colony forming units recovered from surfaces with and without the air-cleaners. We installed UV lights inside the ESPs and determined if UV light, in addition to electrical fields, increased the efficacy of the ESPs. The presence of UV light inside the ESP reduced S. marcescens aerosols by approximately 2 ACH. Finally, a box model indicates that the efficiency of the air-cleaner increases for both biological and nonbiological particles at ventilation rates of 0.2-1, which are typical for residential settings.

Development of an Infiltration and Ventilation Model for Predicting Airflow Rates within Buildings (빌딩 내의 공기유동량 예측을 위한 누입 및 환기모델의 개발)

  • Cho, Seok-Ho
    • Journal of Environmental Science International
    • /
    • v.23 no.2
    • /
    • pp.207-218
    • /
    • 2014
  • A ventilation model was developed for predicting the air change per hour(ACH) in buildings and the airflow rates between zones of a multi-room building. In this model, the important parameters used in the calculation of airflow are wind velocity, wind direction, terrain effect, shielding effect by surrounding buildings, the effect of the window type and insect screening, etc. Also, the resulting set of mass balance equations required for the process of calculation of airflow rates are solved using a Conte-De Boor method. When this model was applied to the building which had been tested by Chandra et al.(1983), the comparison of predicted results by this study with measured results by Chandra et al. indicated that their variations were within -10%~+12%. Also, this model was applied to a building with five zones. As a result, when the wind velocity and direction did not change, terrain characteristics influenced the largest and window types influenced the least on building ventilation among terrain characteristics, local shieldings, and window types. Except for easterly and westerly winds, the ACH increased depending on wind velocity. The wind direction had influence on the airflow rates and directions through openings in building. Thus, this model can be available for predicting the airflow rates within buildings, and the results of this study can be useful for the quantification of airflow that is essential to the research of indoor air quality(temperature, humidity, or contaminant concentration) as well as to the design of building with high energy efficiency.

Economic Feasibility Study for Peak Load Control (최대부하제어(最大負荷制御)의 경제적(經濟的) 타당성(妥當性) 검토(檢討))

  • Yu, Sung-Chul;Yoon, Kap-Koo;Cho, Soon-Bong
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.19-22
    • /
    • 1993
  • Demand side management (DSM) is the planning and implementation of those utility designed to influence customer use of electricity in ways that will produce desired changes in the utility's load shape. It is conspicuous that the peak load control of DSM is efficiently adopted. In this paper, the package type air conditioner(A/C) mounted radio controlled switch. During the summer of 1990 KEPCO conducted tests in Seoul areas to determine the economic feasibility of interrupting A/C units for short periods of time during peak load periods. These tests were performed between July 30 and September 20 and were limited to the hours of between 1 and 6 p.m. These tests indicated that each A/C contributes approximately 4.5kW to the system peak and can be switched off 10 minutes out of each 1/2 hour without causing the customer any discomfort. Switching each A/C off for 10 minutes out of each 1/2 hour results in a peak load demand reduction of one kW per unit.

  • PDF

A Study on Mechanical Ventilation Characteristics in Cargo Handling Area of Tanker (유조선 화물취급구역내 동력환기특성에 관한 연구)

  • 조대환
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.7 no.1
    • /
    • pp.15-23
    • /
    • 2001
  • In regulation of IGC code 12.1 mechanical ventilation should be arranged to ensure sufficient air movement through the space to avoid the accumulation of flammable or toxic vapours and ensure a safe working environment, but in no case should the ventilation system have a capacity of less than 30 changes of air per hour baed upon the total volume of the space. In this study, a scaled mode chamber was constructed to investigate the ventilation characteristics and stagnation area in the hood room of LNG carrier and pump room in tanker. An experimental study was performed on the model by using visualization equipment with a laser apparatus and an image intensifier CCD camera. Twelve different kinds of measuring areas were selected as the experimental condition. Instant simultaneous velocity vectors in the whole fields were measured by a 2-D PIV system A three-dimensional numerical simulation was also carried out for three different Reynolds numbers. Then the CFD predictions were discussed with the experimental results. The results show the spiral L-shape flow that moves from the opening on the left wall diagonally to the upper right part dominates the ventilation structure. The stationary area of hood room in the velcoity distributions was located in the upper left stern part.

  • PDF

Analyzing the air tightness of public housing through a blower door test (Blower door test를 통한 공공행복주택의 침기율 분석)

  • Kim, Jae-Hee;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.167-168
    • /
    • 2023
  • The government has established a zero-energy roadmap in accordance with its 2050 carbon neutrality strategy, and from 2023 onwards, residential buildings with 30 generations or more must be constructed as zero-energy structures. In response to this, measures for energy conservation through enhanced building tightness are being developed. The LH (Land and Housing Corporation) aims to achieve the first-stage building tightness performance targets by 2022 in preparation for this. Currently, South Korea has the "KS L ISO9972 - Building Tightness - Measuring the airtightness of buildings by the fan pressurization method" as the method for measuring building tightness, which was established in 2006 and revised in 2016. In practice, the airtightness is measured using the Blower Door Test method, and it is expressed as ACH50 (the number of air changes per hour at a pressure difference of 50 Pa between the indoor and outdoor environments). This study aims to measure and analyze the airtightness of Happy Homes constructed from 2020 to 2022, categorized by building type.

  • PDF

Changes in Growth Characteristics of Seven Foliage Plants Grown in an Indoor Bio-Wall System Depending on Irrigation Cycle

  • Han, Cheolgu;Shim, Ie-Sung
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.2
    • /
    • pp.179-189
    • /
    • 2020
  • In order to increase the indoor air purification effect of plants, plants need to be placed on 5-10% of indoor spaces. To increase the density and utilization of plants in indoor spaces, studies on bio-wall, a vertical green wall system, have been recently conducted. The purpose of this study was to investigate the growth characteristics of 7 indoor plants introduced to the system and their rooting zones at different irrigation cycles. This study was conducted to investigate a proper irrigation cycle for the continuous maintenance of bio-wall systems. The conditions of their growth environment were maintained as follows: light intensity, 20-50 μmol·m-2·s-1 PPFD; and temperature, 20 - 25℃. For fertilization, Hyponex diluted with water at the ratio of 1:1,000 was supplied to plants. Irrigation was treated at intervals of 1, 3, 5, and 7 days for 1 hour at a time. As a result, there was no significant difference in the growth of plants between different irrigation cycles. Dieffenbachia 'Marianne' showed a significant decrease in the number of leaves at the irrigation cycle of 7 days. In addition, the chlorophyll content was relatively low at the irrigation cycle of 7 days. In terms of the color of leaves, a decrease in L value and b value and an increase in a value were observed, resulting in changes in brightness and color. Ardisia pusilla 'Variegata' showed a slightly higher photosynthetic activity and stomatal conductance when it was watered every day and once per 5 days, while Epipremnum aureum showed a relatively higher photosynthetic activity and stomatal conductance at the irrigation cycle of 3 days. In the case of root activity, it was found that the longer irrigation cycle, the higher root activity compared to daily irrigation. The development of roots of Peperomia clusiifolia was promoted by watering at long intervals. However, in the case of Aglaonema 'Siam-Aurora', the total number of roots decreased at the interval of 7 days. In conclusion, a proper irrigation cycle for the sustainable maintenance of vertical bio-wall systems seems to be 3 days.