• Title/Summary/Keyword: Air change rates

Search Result 159, Processing Time 0.031 seconds

Influence of Particle and Filter Charge on Filtration Property of Air Filter under Particle Loading (입자 및 필터 대전상태에 따른 입자부하조건에서 공기정화 필터의 여과특성)

  • Ji, Sung-Mi;Sohn, Jong-Ryeul;Park, Hyun-Seol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.644-655
    • /
    • 2012
  • As soon as a new air filter is applied to an air purification process, the filter gets loaded with dust particles. Thus, the study on the particle loading characteristics of air filter is very essential in order to understand the real filtration phenomena during filter use. In this study, we investigated the effect of particle and filter charge on the particle loading property of air filter. Charged filter and uncharged filter prepared by discharging the charged filter by isopropyl alcohol were used as test samples, and three types of particle having different charge states were supplied to filters tested. For neutralized particles there was a big difference in areal mass loading rates between charged and uncharged filters due to the very small amount of particle charge, on the other hand the difference was diminished for atomized particle and finally almost vanished for corona charged particles. The pressure drop of filter loaded with corona charged particles was only half of those for neutralized and atomized particles at the same areal mass loading because of the porous structure of particle deposit formed on filter fibers, caused by the space charge effect between particles.

Effect of Intake Flow Control Method on Part Load Performance in SI Engine(2) - EGR Characteristics and Comparison of Dilution Method (스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(2) - EGR 특성과 희석 방법의 비교)

  • Kang, Min Gyun;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.121-130
    • /
    • 2014
  • This paper is the second investigation on the effects of intake flow control methods on the part load performance in a spark ignition engine. In the previous work, two control methods, port throttling and masking, were compared with respect to lean misfire limit, fuel consumption and emissions. In this work, the effects of these two methods on EGR characteristics were studied and simultaneously the differences between EGR and lean combustion as a dilution method were investigated. The results show that EGR limit is expanded up to 23% and 3 ~ 5% improvement in the fuel consumption are achieved around 8 ~ 13% rates by the flow controls comparing with 10% limit and 1.5% reduction around 3% rate of non-control case. The masking method is more effective on the limit expansion than throttling as like as lean misfire limit; however there is no substantial difference in fuel consumptions improvement regardless the control methods except high load condition. Also it is observed that there exist critical EGR rates around which the combustion performance and NOx formation change remarkably and these rates generally coincide with optimum rates for the fuel consumption. In addition, dilution with fresh air is much more advantageous than that of the exhaust gas from the view point of dilution limit and fuel consumption, while utilization of the exhaust gas is more effective on NOx reduction in spite of considerably small dilution compared with the use of fresh air. Finally, the improvement of fuel consumption by massive EGR is highly dependent on the EGR limit at which the engine runs stably, therefore the stratified combustion technique might be a best solution for this purpose.

The Effect of Freezing Rates on the Physico-Chemical Changes of Beef during Frozen Storage at $-20^{\circ}C$ (동결속도에 따른 쇠고기의 냉동저장중 이화학적 변화)

  • Kim, Young-Ho;Yang, Seung-Yong;Lee, Moo-Ha
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.447-452
    • /
    • 1988
  • In order to study effect of freezing rates on the quality changes such as pH, TBA value, free fatty acids and protein extractability, cylindrical chopped beef logs with 10cm of diameter and 10cm of height were frozen at three freezing rates(0.97cm/hr, 2.05cm/hr, 3.71cm/hr)using air blast freezer. Physicochemical changes of frozen meat were investigated during forzen storage at $-20^{\circ}C$ for 16weeks. Results on pH change showed $0.1{\sim}0.2unit$ increase at the 16th week of the frozen storage and the change was smaller with the increasing freezing rates. Free fatty acids content and TBA value also were increased during forzen storage, but they were minimal at 3.71cm/hr freezing rate. Correlation coefficient between TBA value and free fatty acids content were highly significant(r=0.804). After 16weeks of storage, extractibilities of salt soluble protein were decreased by 17.7%, 6.1% and 1.6% at freezing rates of 0.97, 2.05 and 3.71cm/hr, respectively. On the other hand, extractabilities of water soluble protein were decreased by 26.0%, 21.2% and 18.5%, respectively. The effect of freezing rates on the protein extractability appeared to be greater in salt soluble protein than in water soluble protein, but freezing denaturation was more rapid in water soluble protein.

  • PDF

Experimental Study of the Effect on Cabin Thermal Comfort for Cold Storage Systems in Vehicles (축냉 시스템이 차 실내 열 쾌적성에 미치는 영향에 관한 실험적 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.428-435
    • /
    • 2015
  • This paper presents the experimental study of cabin thermal comfort using a cold storage heat exchanger in a vehicle air-conditioning system. Recent vehicle-applied ISG functions for fuel economy and emission, but when vehicles stop, compressors in the air-conditioning system stop, and the cabin temperature sharply increases, making passengers feel thermal discomfort. This study conducts thermal comfort evaluation in the vehicle, which is applied to a cold storage system for the climate control wind tunnel test and the vehicle fleet road test with various airflow volume rates and ambient temperatures blowing to the cold storage heat exchanger. The experimental results, in the cold storage system, air discharge temperature is $3.1-4.2^{\circ}C$ lower than current air-conditioning system when the compressor stops and provides cold air for at least 38 extra seconds. In addition, the blowing airflow volume to the cold storage heat exchanger with various ambient temperature was examined for the control logic of the cold storage system, and in the results, the airflow volume rate is dominant over the outside temperature. For this study, a cold storage system is economically useful to keep the cabin at a thermally comfortable level during the short period when the engine stops in ISG vehicles.

Effects of Storage Gas Concentrations on the Transpiration Rate of Fuji Apple during CA Storage (CA저장 기체조성에 따른 사과 Fuji의 증산속도)

  • 강준수;정헌식;최종욱
    • Food Science and Preservation
    • /
    • v.9 no.3
    • /
    • pp.261-266
    • /
    • 2002
  • A transpiration model was selected and tested experimentally to predict transpiration into of Fuji apple stored in a normal air and controlled atmospheres (l∼3% O$_2$+ l∼3% CO$_2$) at 0$\^{C}$ and 98% RH for 6weeks. CA storage decreased the respiration rate of Fuji apple by 50% when compared with normal air storage. The transpiration rates of apple showed 50∼70% higher in normal air storage than those in CA storage and were decreased by increasing CO$_2$concentration under same concentration of O$_2$. The transpiration rates estimated by the selected model were in good agreement with experimental data for Fuji apples under controlled atmosphere conditions and normal air. When the respiratory heat generation rate u of Fuji apple increased with storage conditions, the evaporating surface temperature and transpiration rate also increased. But since some portion of respiratory heat was used as latent heat in the evaporating surface, the change of u value had a little effect on the determination of the evaporation temperature and the transpiration rate.

Evaluation of Ventilation Performance of a Residential Unit for Different Sampling Points through Actual Field Tests (실증실험을 통한 측정 위치에 따른 주거공간 환기성능 평가)

  • Kwag, Byung Chang;Lee, Soo Man;Kim, Gil Tae;Kim, Jong Yeob
    • Land and Housing Review
    • /
    • v.13 no.3
    • /
    • pp.93-106
    • /
    • 2022
  • Ventilation plays an important role in controlling indoor air quality. Due to the recent spread of infectious diseases such as COVID-19 and with people spending more time indoors, there's been increased attention on the importance of ventilation performance. In many countries, ventilation is regulated by airflow rates and the number of air changes per hour (ACH). However, airflow rates and ACH alone do not provide an accurate account of actual indoor pollutant removal and ventilation uniformity in a space. This study looked into the ventilation performance of an actual residential unit using several sampling points instead of basing it off of airflow and air change rates. Literature review was used to derive relevant influencing factors and the tracer gas dilution method was used for the field test. The study measured air velocity, age of air, and ventilation efficiency at several locations and compared them to the average value at the center of the test space to determine the differences in ventilation performance at the selected measurement points. The study showed that different sampling locations resulted in different ventilation values. Findings of this study will be used to develop an experimental procedure for evaluating indoor ventilation performance of actual residential spaces.

A study on Forced Ventilation Rate for Bedroom Indoor Air Quality Improvement (침실 공기질 개선을 위한 강제 환기횟수에 관한 연구)

  • Kim, Dong-Gyu;Lee, Sung;Kim, Se-Hwan
    • KIEAE Journal
    • /
    • v.9 no.1
    • /
    • pp.85-90
    • /
    • 2009
  • The indoor air quality is one of the most important issues of designing ventilation in high rise apartment buildings. This study suggested proper ventilation rate in the apartment bedroom where mechanical ventilation system has installed. Six university students(four male and two female) were participating in the experiment. Experiments were performed in environmental chamber. Experimental conditions were combinations from three ventilation rate 0, 0.4 and 0.7. Measurement items during 8 hours of experimental time were temperature, humidity, carbon dioxide concentrations and questionnaire surveyed aftrer sleeping. The concentration of Carbon Dioxide depending on ventilation rate in the chamber was analyzed for proper ventilation rate. The results of this paper can be summarized as follows. (1) When two persons experiment, 0.7 ventilation rate was in excess of 1000ppm. (2) When one person experiment, 0.7 and 0.4 ventilation rates were satisfied the criteria of IAQ. (3) It compared 0.4 with 0.7 in the ventilation rate, 0.4 ventilation rate could reduced about 80% of the power by fan similarity law.

Temperature Effect in the process of DAF as pretreatment of SWRO (해수담수화 전처리로서 DAF공정에서 고온의 해수에 대한 영향 특성)

  • Park, Hyunjin;Dockko, Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.807-813
    • /
    • 2012
  • Flocculation and flotation are used as pretreatment steps prior to the reverse osmosis (RO) process. During seawater treatment, high temperature can change the water chemistry of seawater during the process of coagulation. It also affects bubble volume concentration (BVC) and bubble characteristics. Coagulants such as alum and ferric salts at $40^{\circ}C$ can also change flux rates in the seawater reverse osmosis (SWRO) process. In this study, the bubble characteristics in dissolved air flotation (DAF), used as a SWRO pretreatment process, were studied in synthetic seawater at $20^{\circ}C$ and $40^{\circ}C$. The flux of an RO membrane was monitored after dosing the synthetic seawater with coagulants at different temperatures. Results showed that BVC increases as the operating pressure increases and as the salt concentration decreases. The bubble size released at $40^{\circ}C$ is far smaller than that at $20^{\circ}C$The addition of a ferric salt is effective for turbidity removal in synthetic seawater at $20^{\circ}C$; it is more effective than alum. When synthetic seawater was dosed with a ferric salt, the RO membrane flux increased by 27 % at $40^{\circ}C$.

Water Balance Change of Watershed by Climate Change (기후변화에 따른 유역의 물수지 변화)

  • Yang, Hea-Kun
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.3 s.120
    • /
    • pp.405-420
    • /
    • 2007
  • This study is intended to analyze and evaluate the effects of Seomjingang Dam and Soyanggang Dam Catchment on water circulation in order to examine water balance change of watershed by climate change. Obviously, air temperature and precipitation showed a gradually increasing trend for the past 30 years; evapotranspiration vary in areas and increasing annual average air temperature is not always proportional to increasing evapotranspiration. Based on Penman-FAO24, climatic water balance methods and measured values are shown to be significantly related with each other and to be available in Korea. It is certainly recognized that increasing annual rainfall volume leads to increasing annual runoff depth; for fluctuation in annual runoff rates, there are some difference in changes in measured values and calculated values. It is presumably early to determine that climate changes has a significant effect on runoff characteristic at dam catchment. It is widely known that climate changes are expected to cause many difficulties in water resources and disaster management. To take appropriate measures, deeper understanding is necessary for climatological conditions and variability of hydrology and to have more careful prospection and to accumulate highly reliable knowledge would be prerequisites for hydrometric network.

Drying Characteristics and Content Change of Major Components of Shiitake Mushroom (Lentinus erodes) 1. Drying Characteristics and Drying Model (표고버섯의 건조 특성 및 주요성분의 변화 1. 건조특성 및 건조모델)

  • Choe, Byeong-Min;Seo, Jae-Sin;Choe, Ju-Ho
    • Food Science and Preservation
    • /
    • v.4 no.3
    • /
    • pp.271-278
    • /
    • 1997
  • Drying of Shiitake mushroom was investigated to see the effect of temperature, relative humidity of drying air and diameter of the pileus on its rates. The drying rate was increased with the increase of the air temperature and the decrease of the relative humidity. The external color was dark brown at higher drying temperature and higher relative humidity. Exponential and Thompson nodel were found to describe well the raying process of the Shiitake mushroom.

  • PDF